Using very simple classifiers, we show for several publicly available microarray and proteomics datasets how these curses influence classification outcomes. In particular, even if the sample per feature ratio is increased to the recommended 5-10 by feature extraction/reduction methods, dataset sparsity can render any classification result statistically suspect. In addition, several 'optimal' feature sets are typically identifiable for sparse datasets, all producing perfect classification results, both for the training and independent validation sets. This non-uniqueness leads to interpretational difficulties and casts doubt on the biological relevance of any of these 'optimal' feature sets. We suggest an approach to assess the relative quality of apparently equally good classifiers.
The pathology, nodal involvement and tumour vascular invasion were predicted by computerized statistical classification of the proton MRS spectrum from a fine-needle aspirate biopsy taken from the primary breast lesion.
Nuclear magnetic resonance (NMR) spectra were acquired from suspensions of clinically important yeast species of the genus Candida to characterize the relationship between metabolite profiles and species identification. Major metabolites were identified by using two-dimensional correlation NMR spectroscopy. Onedimensional proton NMR spectra were analyzed by using a staged statistical classification strategy. Analysis of NMR spectra from 442 isolates of Candida albicans, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis resulted in rapid, accurate identification when compared with conventional and DNA-based identification. Spectral regions used for the classification of the five yeast species revealed species-specific differences in relative amounts of lipids, trehalose, polyols, and other metabolites. Isolates of C. parapsilosis and C. glabrata with unusual PCR fingerprinting patterns also generated atypical NMR spectra, suggesting the possibility of intraspecies discontinuity. We conclude that NMR spectroscopy combined with a statistical classification strategy is a rapid, nondestructive, and potentially valuable method for identification and chemotaxonomic characterization that may be broadly applicable to fungi and other microorganisms.
Urine metabolites correlate with airway dysfunction in an asthma model. Urine NMR analysis is a promising, noninvasive technique for monitoring asthma in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.