In light of the limited efficacy of current treatments for cardiac regeneration, tissue engineering approaches have been explored for their potential to provide mechanical support to injured cardiac tissues, deliver cardio-protective molecules, and improve cell-based therapeutic techniques. Injectable hydrogels are a particularly appealing system as they hold promise as a minimally invasive therapeutic approach. Moreover, injectable acellular alginate-based hydrogels have been tested clinically in patients with myocardial infarction (MI) and show preservation of the left ventricular (LV) indices and left ventricular ejection fraction (LVEF). This review provides an overview of recent developments that have occurred in the design and engineering of various injectable hydrogel systems for cardiac tissue engineering efforts, including a comparison of natural versus synthetic systems with emphasis on the ideal characteristics for biomimetic cardiac materials.
Background: Diastolic dysfunction (DD) is associated with the development of heart failure (HF) and contributes to the pathogenesis of other cardiac maladies, including atrial fibrillation (AF). Inhibition of histone deacetylases (HDACs) has been shown to prevent DD by enhancing myofibril relaxation. Here, we addressed the therapeutic potential of HDAC inhibition in a model of established DD with preserved ejection fraction (EF). Methods: Four weeks following uninephrectomy (UNX) and implantation with deoxycorticosterone acetate (DOCA) pellets, when DD was clearly evident, one cohort of mice was administered the clinical-stage HDAC inhibitor ITF2357/Givinostat. Echocardiography, blood pressure measurements, and endpoint invasive hemodynamic analyses were performed. Myofibril mechanics and intact cardiomyocyte relaxation were assessed ex vivo . Cardiac fibrosis was evaluated by picrosirius red (PSR) staining and second harmonic generation (SHG) microscopy of left ventricular (LV) sections, RNA-sequencing of LV mRNA, mass spectrometry-based evaluation of decellularized LV biopsies, and atomic force microscopy (AFM) determination of LV stiffness. Mechanistic studies were performed with primary rat and human cardiac fibroblasts. Results: HDAC inhibition normalized DD without lowering blood pressure in this model of systemic hypertension. Surprisingly, in contrast to prior models, myofibril relaxation was unimpaired in UNX/DOCA mice. Furthermore, cardiac fibrosis was not evident in any mouse cohorts based on PSR staining or SHG microscopy. However, mass spectrometry revealed induction in the expression of more than one hundred extracellular matrix (ECM) proteins in LVs of UNX/DOCA mice, which correlated with profound tissue stiffening based on AFM. Remarkably, ITF2357/Givinostat treatment blocked ECM expansion and LV stiffening. The HDAC inhibitor was subsequently shown to suppress cardiac fibroblast activation, at least in part, by blunting recruitment of the pro-fibrotic chromatin reader protein, BRD4, to key gene regulatory elements. Conclusions: These findings demonstrate the potential of HDAC inhibition as a therapeutic intervention to reverse existing DD, and establish blockade of ECM remodeling as a second mechanism by which HDAC inhibitors improve ventricular filling. Additionally, our data reveal the existence of pathophysiologically relevant 'covert' or 'hidden' cardiac fibrosis that is below the limit of detection of histochemical stains such as PSR, highlighting the need to evaluate fibrosis of the heart using diverse methodologies.
The ability of the adult heart to regenerate cardiomyocytes (CMs) lost after injury is limited, generating interest in developing efficient cell-based transplantation therapies. Rigid carbon nanotubes (CNTs) scaffolds have been used to improve CMs viability, proliferation, and maturation, but they require undesirable invasive surgeries for implantation. To overcome this limitation, we developed an injectable reverse thermal gel (RTG) functionalized with CNTs (RTG-CNT) that transitions from a solution at room temperature to a three-dimensional (3D) gel-based matrix shortly after reaching body temperature. Here we show experimental evidence that this 3D RTG-CNT system supports long-term CMs survival, promotes CMs alignment and proliferation, and improves CMs function when compared with traditional two-dimensional gelatin controls and 3D plain RTG system without CNTs. Therefore, our injectable RTG-CNT system could potentially be used as a minimally invasive tool for cardiac tissue engineering efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.