Whole genome sequencing (WGS) is a powerful tool for public health infectious disease investigations owing to its higher resolution, greater efficiency, and cost-effectiveness over traditional genotyping methods. Implementation of WGS in routine public health microbiology laboratories is impeded by a lack of user-friendly automated and semi-automated pipelines, restrictive jurisdictional data sharing policies, and the proliferation of non-interoperable analytical and reporting systems. To address these issues, we developed the Integrated Rapid Infectious Disease Analysis (IRIDA) platform (irida.ca), a user-friendly, decentralized, open-source bioinformatics and analytical web platform to support real-time infectious disease outbreak investigations using WGS data. Instances can be independently installed on local highperformance computing infrastructure, enabling private and secure data management and analyses according to organizational policies and governance. IRIDA's data management capabilities enable secure upload, storage and sharing of all WGS data and metadata. The core platform currently includes pipelines for quality control, assembly, annotation, variant detection, phylogenetic analysis, in silico serotyping, multi-locus sequence typing, and genome distance calculation. Analysis pipeline results can be visualized within the platform through dynamic line lists and integrated phylogenomic clustering for research and discovery, and for enhancing decision-making support and hypothesis generation in epidemiological investigations. Communication and data exchange between instances are provided through customizable access controls. IRIDA complements centralized systems, empowering local analytics and visualizations for genomics-based microbial pathogen investigations. IRIDA is currently transforming the Canadian public health ecosystem and is freely available at https://github.com/phac-nml/irida and www.irida.ca. Impact StatementWhole genome sequencing (WGS) is revolutionizing infectious disease analysis and surveillance due to its cost effectiveness, utility, and improved analytical power. To date, no . CC-BY-NC-ND 4.0 International license It is made available under a was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx.doi.org/10.1101/381830 doi: bioRxiv preprint first posted online Jul. 31, 2018; 3 "one-size-fits-all" genomics platform has been universally adopted, owing to differences in national (and regional) health information systems, data sharing policies, computational infrastructures, lack of interoperability and prohibitive costs. The Integrated Rapid Infectious Disease Analysis (IRIDA) platform is a user-friendly, decentralized, open-source bioinformatics and analytical web platform developed to support real-time infectious disease outbreak investigations using WGS data. IRIDA empowers public health, regulatory and clinical microbiology laboratory personnel to bett...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.