Background-Coronary artery bypass grafting with the use of cardiopulmonary bypass is known to mediate an inflammatory response. The stress-inducible heat-shock protein (HSP) 70 has been detected in myocardial cells after CABG, and toll-like receptors (TLRs) are suggested as putative signaling receptors for the HSPs, mediating synthesis of inflammatory cytokines. The main aims of our study were to explore the release of HSP70 and the regulation of monocyte TLR-2 and TLR-4 expression after CABG. Methods and Results-Twenty patients referred for elective CABG were included in this study. Using immunoassays, we detected HSP70 in plasma after CABG, with peak concentration immediately after surgery. Interleukin-6 in plasma reached peak concentration 5 hours after surgery. Monocyte CD14, TLR-2, and TLR-4 expression, as analyzed by flow cytometry, was initially downregulated. On day 1, CD14 expression normalized, whereas TLR-2 and TLR-4 expression was upregulated. TLR-4 was significantly upregulated even on postoperative day 2. Additional experiments revealed that peritoneal macrophages from control (C3H/HeN) mice responded to HSP70 with release of tumor necrosis factor, whereas macrophages from mutated TLR-4 (C3H/HeJ) mice were unresponsive. In vitro, human adherent monocytes responded to recombinant HSP70 with interleukin-6 and tumor necrosis factor release. CD14 and TLR-4 monoclonal antibodies inhibited the cytokine response. Conclusions-In this study, we observed an immediate release of HSP70 into the circulation and a modulation of monocyte TLR-2 and TLR-4 expression after CABG. TLR-4 and CD14 appear to be involved in an HSP70-mediated activation of innate immunity. (Circulation. 2002;105:685-690.)
Objectives: To test the hypothesis that heat shock protein (Hsp) 70 may be released into the circulation after acute myocardial infarction (AMI) by exploring the kinetics of Hsp70 release and the relations between Hsp70 and markers of inflammation and myocardial damage in AMI. Design: Blood samples from 24 patients were prospectively collected through to the first day after AMI. Hsp70, interleukin (IL) 6, IL-8, and IL-10 in serum were measured by enzyme linked immunosorbent assay (ELISA). Results: Median Hsp70 concentrations in AMI patients measured at arrival, six hours thereafter, and the following morning were 686, 868, and 607 pg/ml, respectively. These concentrations were all significantly different from those of the control patients with angina with a median serum Hsp70 concentration of 306 pg/ml. Peak Hsp70 correlated with creatine kinase (CK) MB (r = 0.62, p , 0.01) and cardiac troponin T (r = 0.58, p , 0.01). Furthermore, serum Hsp70 correlated with IL-6 and IL-8 at six hours (r = 0.60, p , 0.01 and r = 0.59, p , 0.01, respectively). Conclusions: In this study, Hsp70 was rapidly released into the circulation after AMI. Circulating Hsp70 is suggested as a marker of myocardial damage. In addition, Hsp70 may have a role in the inflammatory response after AMI.
Significantly more HSP70 was released into the circulation following conventional than following off-pump CABG. Circulating HSP70 may indicate cellular stress or damage. Furthermore, HSPs are suggested as immunoregulatory agents, and may be important in the host defence postoperatively.
Human Toll-like receptor 2 (TLR2) is a receptor for a variety of microbial products and mediates activation signals in cells of the innate immune system. We have investigated expression and regulation of the TLR2 protein in human blood cells and tissues by using two anti-TLR2 mAbs. Only myelomonocytic cell lines expressed surface TLR2. In tonsils, lymph nodes, and appendices, activated B-cells in germinal centers expressed TLR2. In human blood, CD14+ monocytes expressed the highest level of TLR2 followed by CD15+ granulocytes, and CD19+ B-cells, CD3+ T-cells, and CD56+ NK cells did not express TLR2. The level of TLR2 on monocytes was after 20 h up-regulated by LPS, GM-CSF, IL-1, and IL-10 and down-regulated by IL-4, IFN-γ, and TNF. On purified granulocytes, LPS, GM-CSF, and TNF down-regulated, and IL-10 modestly increased TLR2 expression after 2 h. These data suggest that TLR2 protein expression in innate immune cells is differentially regulated by inflammatory mediators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.