This is a unique state of the art review written by a group of 21 international recognized experts in the field that gathered during a meeting organized by the European Neuromuscular Centre (ENMC) in Naarden, March 2017. It systematically reports the entire evidence base for airway clearance techniques (ACTs) in both adults and children with neuromuscular disorders (NMD). We not only report randomised controlled trials, which in other systematic reviews conclude that there is a lack of evidence base to give an opinion, but also include case series and retrospective reviews of practice. For this review, we have classified ACTs as either proximal (cough augmentation) or peripheral (secretion mobilization). The review presents descriptions; standard definitions; the supporting evidence for and limitations of proximal and peripheral ACTs that are used in patients with NMD; as well as providing recommendations for objective measurements of efficacy, specifically for proximal ACTs. This state of the art review also highlights how ACTs may be adapted or modified for specific contexts (e.g. in people with bulbar insufficiency; children and infants) and recommends when and how each technique should be applied.
Mechanical insufflation-exsufflation (MI-E) is a strategy to treat pulmonary exacerbations in neuromuscular disorders (NMDs). Pediatric guidelines for optimal setting titration of MI-E are lacking and the settings used in studies vary. Our objective was to assess the actual MI-E settings being used in current clinical treatment of children with NMDs and a survey was sent in July 2016 to European expertise centers. Ten centers from seven countries gave information on MI-E settings for 240 children aged 4 months to 17.8 years (mean 10.5). Settings varied greatly between the centers. Auto mode was used in 71%, triggering of insufflation in 21% and manual mode in 8% of the cases. Mean (SD) time for insufflation (Ti) and exsufflation (Te) were 1.9 (0.5) and 1.8 (0.6) s respectively, both ranging from 1 to 4s. Asymmetric time settings were common (65%). Mean (SD) insufflation (Pi) and exsufflation (Pe) pressures were 32.4 (7.8) and -36.9 (7.4), ranging 10 to 50 and -10 to -60cmHO, respectively. Asymmetric pressures were as common as symmetric. Both Ti, Te, Pi and Pe increased with age (p < 0.001). In conclusion, pediatric MI-E settings in clinical use varied greatly and altered with age, highlighting the need of more studies to improve our knowledge of optimal settings in MI-E in children with NMDs.
When ability to cough is impaired, secretion clearance may be assisted and augmented by Mechanical Insufflation-Exsufflation (MI-E). In some individuals, the efficacy of MI-E may be hampered by counterproductive upper airway reactions, where the airways close in response to positive pressures. In order to fully utilize the therapeutic potential inherent in the MI-E technology, we need a better understanding of the pathophysiology behind these untoward reactions. There is an increasing interest in monitoring and measuring upper airway responses to MI-E, and how such information can be used to optimize the MI-E settings. The purpose of this narrative review is to increase the theoretical understanding of larynx as a respiratory organ, summarize the current literature in the area, and provide insight into how this knowledge can affect current clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.