Background:The rapid adoption of digital skin imaging applications has increased the utilization of smartphone-acquired images in dermatology. While this has enormous potential for scaling the assessment of concerning skin lesions, the insufficient quality of many consumer/patient-taken images can undermine clinical accuracy and potentially harm patients due to lack of diagnostic interpretability. We aim to characterize the current state of digital skin imaging applications and comprehensively assess how image acquisition features address image quality. Materials and methods:Publicly discoverable mobile, web, and desktop-based skin imaging applications, identified through keyword searches in mobile app stores, Google Search queries, previous teledermatology studies, and expert recommendations were independently assessed by three reviewers. Applications were categorized by primary audience (consumer-facing, nonhospital-based practice, or enterprise/health system), function (education, store-and-forward teledermatology, live-interactive teledermatology, electronic medical record adjunct/clinical imaging storage, or clinical triage), inapp connection to a healthcare provider (yes or no), and user type (patient, provider, or both).Results: Just over half (57%) of 191 included skin imaging applications had at least one of 14 image acquisition technique features. Those that were consumer-facing, intended for educational use, and designed for both patient and physician users had significantly greater feature richness (p < 0.05). The most common feature was the inclusion of text-based imaging tips, followed by the requirement to submit multiple images and body area matching.
Background: Despite the increasing ubiquity and accessibility of teledermatology applications, few studies have comprehensively surveyed their features and technical standards. Importantly, features implemented after the point of capture are often intended to augment image utilization, while technical standards affect interoperability with existing healthcare systems. We aim to comprehensively survey image utilization features and technical characteristics found within publicly discoverable digital skin imaging applications. Materials and Methods:Applications were identified and categorized as described in Part I. Included applications were then further assessed by three independent reviewers for post-imaging content, tools, and functionality. Publicly available information was used to determine the presence or absence of relevant technology standards and/or data characteristics.Results: A total of 20 post-image acquisition features were identified across three general categories: (1) metadata attachment, (2) functional tools (i.e., those that utilized images or in-app content to perform a user-directed function), and (3) image processing. Over 80% of all applications implemented metadata features, with nearly half having metadata features only. Individual feature occurred and feature richness varied significantly by primary audience (p < 0.0001) and function (p < 0.0001). On average, each application included under three features. Less than half of all applications requested consent for user-uploaded photos and fewer than 10% provided clear data use and privacy policies. Conclusion:Post-imaging functionality in skin imaging applications varies significantly by primary audience and intended function, though nearly all applications implemented metadata labeling. Technical standards are often not implemented or reported
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.