[1] Multiphase flow and contaminant transport in porous media are strongly influenced by the presence of fluid-fluid interfaces. Recent theoretical work based on conservation laws and the second law of thermodynamics has demonstrated the need for quantitative interfacial area information to be incorporated into multiphase flow models. We have used synchrotron based X-ray microtomography to investigate unsaturated flow through a glass bead column. Fully three-dimensional images were collected at points on the primary drainage curve and on the secondary imbibition and drainage loops. Analysis of the high-resolution images (17 micron voxels) allows for computation of interfacial areas and saturation. Corresponding pressure measurements are made during the course of the experiments. Results show the fluid-fluid interfacial area increasing as saturation decreases, reaching a maximum at saturations ranging from 20 to 35% and then decreasing as the saturation continues to zero. The findings support results of numerical studies reported in the literature.
Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally, and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge, storage, and discharge to streams are compared in two geologically and climatologically different regions in Denmark. Outputs are used for the periods 1961 to 1990 and 2071 to 2100 from a regional climate model representing the Intergovernmental Panel on Climate Change (IPCC) scenarios A2 and B2. A physically based, distributed hydrological model simulates changes in groundwater head, recharge, and discharge. Precipitation, temperature, and reference evapotranspiration increased for both the A2 and B2 scenarios. This results in a significant increase in mean annual net precipitation, but with decreased values in the summer months. The magnitude of the hydrological response to the simulated climate change is highly dependent on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increased significantly, resulting in higher groundwater levels and increasing groundwater–river interaction. On Sjaelland, where the topsoil is dominated by low‐permeability soils and the aquifers are protected by thick clay layers of regional extent, only minor changes in groundwater levels are predicted. The primary effect in this area is the change in stream discharge, caused by changes in drain flow and overland flow, with up to 50% increase in winter and 50% decrease in summer. This study shows the added value of studying different climate scenarios and hydrological systems, so that the simulated effects can be compared both qualitatively and quantitatively.
Abstract. Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.