Identifying adverse drug reactions from free-text electronic hospital health record notes
Drug-drug interactions (DDIs) frequently trigger adverse drug events or reduced efficacy. Most DDI alerts, however, are overridden because of irrelevance for the specific patient. Basic DDI clinical decision support (CDS) systems offer limited possibilities for decreasing the number of irrelevant DDI alerts without missing relevant ones. Computerized decision tree rules were designed to context-dependently suppress irrelevant DDI alerts. A crossover study was performed to compare the clinical utility of contextualized and basic DDI management in hospitalized patients. First, a basic DDI-CDS system was used in clinical practice while contextualized DDI alerts were collected in the background. Next, this process was reversed. All medication orders (MOs) from hospitalized patients with at least one DDI alert were included. The following outcome measures were used to assess clinical utility: positive predictive value (PPV), negative predictive value (NPV), number of pharmacy interventions (PIs)/1,000 MOs, and the median time spent on DDI management/1,000 MOs. During the basic DDI management phase 1,919 MOs/day were included, triggering 220 DDI alerts/1,000 MOs; showing 57 basic DDI alerts/1,000 MOs to pharmacy staff; PPV was 2.8% with 1.6 PIs/1,000 MOs costing 37.2 minutes/1,000 MOs. No DDIs were missed by the contextualized CDS system (NPV 100%). During the contextualized DDI management phase 1,853 MOs/day were included, triggering 244 basic DDI alerts/1,000 MOs, showing 9.6 contextualized DDIs/1,000 MOs to pharmacy staff; PPV was 41.4% (P < 0.01), with 4.0 PIs/1,000 MOs (P < 0.01) and 13.7 minutes/1,000 MOs. The clinical utility of contextualized DDI management exceeds that of basic DDI management.
Objective Combining text mining (TM) and clinical decision support (CDS) could improve diagnostic and therapeutic processes in clinical practice. This review summarizes current knowledge of the TM-CDS combination in clinical practice, including their intended purpose, implementation in clinical practice, and barriers to such implementation. Materials and Methods A search was conducted in PubMed, EMBASE, and Cochrane Library databases to identify full-text English language studies published before January 2022 with TM-CDS combination in clinical practice. Results Of 714 identified and screened unique publications, 39 were included. The majority of the included studies are related to diagnosis (n = 26) or prognosis (n = 11) and used a method that was developed for a specific clinical domain, document type, or application. Most of the studies selected text containing parts of the electronic health record (EHR), such as reports (41%, n = 16) and free-text narratives (36%, n = 14), and 23 studies utilized a tool that had software “developed for the study”. In 15 studies, the software source was openly available. In 79% of studies, the tool was not implemented in clinical practice. Barriers to implement these tools included the complexity of natural language, EHR incompleteness, validation and performance of the tool, lack of input from an expert team, and the adoption rate among professionals. Discussion/Conclusions The available evidence indicates that the TM-CDS combination may improve diagnostic and therapeutic processes, contributing to increased patient safety. However, further research is needed to identify barriers to implementation and the impact of such tools in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.