Autoimmune diseases are characterized by dendritic cell (DC)-driven activation of pro-inflammatory T cell responses. Therapeutic options for these severe diseases comprise small molecules such as dimethyl fumarate, or "gasotransmitters" such as CO. Herein we describe the synthesis of bifunctional enzyme-triggered CO-releasing molecules (ET-CORMs) that allow the simultaneous intracellular release of both CO and methyl fumarate. Using bone-marrow-derived DCs the impressive therapeutic potential of these methyl fumarate-derived compounds (FumET-CORMs) is demonstrated by strong inhibition of lipopolysaccharide-induced pro-inflammatory signaling pathways and blockade of downstream interleukin-12 or -23 production. The data also show that FumET-CORMs are able to transform DCs into an anti-inflammatory phenotype. Thus, these novel compounds have great clinical potential, for example, for the treatment of psoriasis or other inflammatory conditions of the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.