Carabid beetles are abundant in temperate agroecosystems and can play a pivotal role as biocontrol agents. While there is good knowledge regarding their effects on invertebrate pests in some systems, comparably little is known on the rate of seed feeding under field conditions. Molecular approaches are ideally suited for investigating carabid feeding interactions; to date, however, they have only been applied to animal prey. We sampled adult carabid beetles in organic cereal fields in three regions along a Central European transect. Regurgitates from populations of the three most common species, Poecilus cupreus, Pseudoophonus rufipes and Pterostichus melanarius , were screened for plant DNA, cereal aphids, collembolans and earthworms. The frequency of carabid individuals positive for plant DNA was high (> 70%) and independent of carabid species, sex, region and the time point of sampling. Detections for non-pest and pest prey were comparably lower, with 21.6% for collembolans, 18.1% for earthworms and 4.2% for aphids, respectively. Despite the prolonged detection period of plant DNA in carabid guts, as compared to animal prey, these first results suggest that weed seeds form an important part of the adult carabid diet. It would also lend support to the hypothesis that seed-feeding carabids are biocontrol agents of weeds, with effects of regulation on the weed seedbank that depend on behavioural and contextual factors including carabid species preferences for weed seed species, their life stage and tillage practices.
Leaf-borne vibrations are potentially important to caterpillars for communication and risk assessment. Yet, little is known about the vibratory environment of caterpillars, or how they detect and discriminate between vibrations from relevant and non-relevant sources. We measured the vibratory ‘landscape’ of the territorial masked birch caterpillar Drepana arcuata (Drepanidae), and assessed its ability to detect and respond to vibrations generated by conspecific and predatory intruders, wind and rain. Residents of leaf shelters were shown to respond to low amplitude vibrations generated by a crawling conspecific intruder, since removal of the vibrations through leaf incision prevented the resident’s response. Residents did not respond to large amplitude, low frequency disturbances caused by wind and rain alone, but did respond to approaching conspecifics under windy conditions, indicating an ability to discriminate between these sources. Residents also responded differently in the presence of vibrations generated by approaching predators (Podisus) and conspecifics. An analysis of vibration characteristics suggests that despite significant overlap between vibrations from different sources, there are differences in frequency and amplitude characteristics that caterpillars may use to discriminate between sources. Caterpillars live in a vibration-rich environment that we argue forms a prominent part of the sensory world of substrate bound holometabolous larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.