Background
Early detection of clusters of pathogens is crucial for infection prevention and control (IPC) in hospitals. Conventional manual cluster detection is usually restricted to certain areas of the hospital and multidrug resistant organisms. Automation can increase the comprehensiveness of cluster surveillance without depleting human resources. We aimed to describe the application of an automated cluster alert system (CLAR) in the routine IPC work in a hospital. Additionally, we aimed to provide information on the clusters detected and their properties.
Methods
CLAR was continuously utilized during the year 2019 at Charité university hospital. CLAR analyzed microbiological and patient-related data to calculate a pathogen-baseline for every ward. Daily, this baseline was compared to data of the previous 14 days. If the baseline was exceeded, a cluster alert was generated and sent to the IPC team. From July 2019 onwards, alerts were systematically categorized as relevant or non-relevant at the discretion of the IPC physician in charge.
Results
In one year, CLAR detected 1,714 clusters. The median number of isolates per cluster was two. The most common cluster pathogens were Enterococcus faecium (n = 326, 19 %), Escherichia coli (n = 274, 16 %) and Enterococcus faecalis (n = 250, 15 %). The majority of clusters (n = 1,360, 79 %) comprised of susceptible organisms. For 906 alerts relevance assessment was performed, with 317 (35 %) alerts being classified as relevant.
Conclusions
CLAR demonstrated the capability of detecting small clusters and clusters of susceptible organisms. Future improvements must aim to reduce the number of non-relevant alerts without impeding detection of relevant clusters. Digital solutions to IPC represent a considerable potential for improved patient care. Systems such as CLAR could be adapted to other hospitals and healthcare settings, and thereby serve as a means to fulfill these potentials.
Background
Factors contributing to the spread of SARS-CoV-2 outside the acute care hospital setting have been described in detail. However, data concerning risk factors for nosocomial SARS-CoV-2 infections in hospitalized patients remain scarce. To close this research gap and inform targeted measures for the prevention of nosocomial SARS-CoV-2 infections, we analyzed nosocomial SARS-CoV-2 cases in our hospital during a defined time period.
Methods
Data on nosocomial SARS-CoV-2 infections in hospitalized patients that occurred between May 2020 and January 2021 at Charité university hospital in Berlin, Germany, were retrospectively gathered. A SARS-CoV-2 infection was considered nosocomial if the patient was admitted with a negative SARS-CoV-2 reverse transcription polymerase chain reaction test and subsequently tested positive on day five or later. As the incubation period of SARS-CoV-2 can be longer than five days, we defined a subgroup of “definite” nosocomial SARS-CoV-2 cases, with a negative test on admission and a positive test after day 10, for which we conducted a matched case–control study with a one to one ratio of cases and controls. We employed a multivariable logistic regression model to identify factors significantly increasing the likelihood of nosocomial SARS-CoV-2 infections.
Results
A total of 170 patients with a nosocomial SARS-CoV-2 infection were identified. The majority of nosocomial SARS-CoV-2 patients (n = 157, 92%) had been treated at wards that reported an outbreak of nosocomial SARS-CoV-2 cases during their stay or up to 14 days later. For 76 patients with definite nosocomial SARS-CoV-2 infections, controls for the case–control study were matched. For this subgroup, the multivariable logistic regression analysis revealed documented contact to SARS-CoV-2 cases (odds ratio: 23.4 (95% confidence interval: 4.6–117.7)) and presence at a ward that experienced a SARS-CoV-2 outbreak (odds ratio: 15.9 (95% confidence interval: 2.5–100.8)) to be the principal risk factors for nosocomial SARS-CoV-2 infection.
Conclusions
With known contact to SARS-CoV-2 cases and outbreak association revealed as the primary risk factors, our findings confirm known causes of SARS-CoV-2 infections and demonstrate that these also apply to the acute care hospital setting. This underscores the importance of rapidly identifying exposed patients and taking adequate preventive measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.