Adaptive changes of major body systems in astronauts during spaceflight can be simulated by strict anti-orthostatic head-down tilt (HDT) bed rest (BR), a ground-based microgravity (microG) model that provides a meaningful opportunity to study atrophy mechanisms and possible countermeasures under controlled experimental conditions. As nitric oxide (NO) signaling is linked to muscle activity, we investigated altered expression of the three major isoforms of nitric oxide synthase (NOS 1-3) at cellular compartments during prolonged HDT BR without (control group) and with resistance exercise interventions (exercise group) using a flywheel ergometer (FWE). Atrophy detected in mixed (fast-slow) m. vastus lateralis (VL) and slow-type m. soleus (SOL) myofiber Types I and II (minus 35-40% of myofiber cross-sectional area) was prevented by FWE training. Concomitant to muscle atrophy, reduced NOS 1 protein and immunostaining was found in VL not in SOL biopsies. In trained VL, NOS 1 protein and immunostaining at myofibers II were significantly increased at the end of BR. Exercise altered NOS 2/caveolin 3 co-immunostaining patterns of subsarcolemmal focal accumulations in VL or SOL myofibers, which suggests reorganization of sarcolemmal microdomains. In trained VL, increased capillary-to-fiber (C/F) ratio and NOS 3 protein content were documented. Activity-linked NO signaling may be widespread in skeletal muscle cellular compartments that may be directly or indirectly impacted by adequate exercise countermeasure protocols to offset the negative effects induced by disuse, immobilization, or extended exposure to microgravity.
Prolonged immobilization of the human body results in functional impairments and musculoskeletal system deconditioning that may be attenuated by adequate muscle exercise. In a 56-day horizontal bed rest campaign involving voluntary males we investigated the effects of vibration muscle exercise (RVE, 2x6 min daily) on the lower limb skeletal muscles using a newly designed foot plantar trainer (Galileo Space) for use at supine position during bed rest. The maximally voluntary isometric plantar flexion force was maintained following regular RVE bouts during bed rest (controls -18.6 %, P<0.05). At the start (BR2) and end of bed rest (BR55) muscle biopsies were taken from both mixed fast/slow-type vastus lateralis (VL) and mainly slow-type soleus muscle (SOL), each having n=10. RVE group: the size of myofiber types I and II was largely unchanged in VL, and increased in SOL. Ctrl group: the SOL depicted a disrupted pattern of myofibers I/II profiles (i.e., type II>140 % vs. preBR) suggesting a slow-to-fast muscle phenotype shift. In RVE-trained SOL, however, an overall conserved myofiber I/II pattern was documented. RVE training increased the activity-dependent expression of nitric oxide synthase type 1 immunofluorescence at SOL and VL myofiber membranes. These data provide evidence for the beneficial effects of RVE training on the deconditioned structure and function of the lower limb skeletal muscle. Daily short RVE should be employed as an effective atrophy countermeasure co-protocol preferentially addressing postural calf muscles during prolonged clinical immobilization or long-term human space missions.
The cellular mechanisms of human skeletal muscle adaptation to disuse are largely unknown. The aim of this study was to determine the morphological and biochemical changes of the lower limb soleus and vastus lateralis muscles following 60 days of head-down tilt bed rest in women with and without exercise countermeasure using molecular biomarkers monitoring functional cell compartments. Muscle biopsies were taken before (pre) and after bed rest (post) from a bed rest-only and a bed rest exercise group ( n = 8, each). NOS1 and NOS3/PECAM, markers of myofibre 'activity' and capillary density, and MuRF1 (E3 ubiquitin-ligase), a marker of proteolysis, were documented by confocal immunofluorescence and immunoblot analyses. Morphometrical parameters (myofibre cross-sectional area, type I/II distribution) were largely preserved in muscles from the exercise group with a robust trend for type II hypertrophy in vastus lateralis. In the bed rest-only group, the relative NOS1 immunostaining intensity was decreased at type I and II myofibre membranes, while the bed rest plus exercise group compensated for this loss particularly in soleus. In the microvascular network, NOS3 expression and the capillary-to-fibre ratio were both increased in the exercise group. Elevated MuRF1 immunosignals found in subgroups of atrophic myofibres probably reflected accelerated proteolysis. Immunoblots revealed overexpression of the MuRF1 protein in the soleus of the bed rest-only group ( > 35% vs. pre). We conclude that exercise countermeasure during bed rest affected both NOS/ NO signalling and proteolysis in female skeletal muscle. Maintenance of NO signalling mechanisms and normal protein turnover by exercise countermeasure may be crucial steps to attenuate human skeletal muscle atrophy and to maintain cell function following chronic disuse.
It has previously been shown that skeletal myotubes express nitric oxide synthase (NOS) and produce and release NO signals. NOS is also part of agrin-induced acetylcholine receptor aggregations on myotubes. As nerve-muscle interactions underlie reciprocal signaling mechanisms, we hypothesized that NO signals in target myotubes may be induced by neuromuscular contacts in development. Chimeric neuron-myotube co-cultures were prepared using p75-selected spinal cord neurons from embryonic chicken. Confocal imaging revealed robust 1,2-diaminoanthraquinone red fluorescence indicative of de novo formation of NO only in those myotubes which were contacted by neurites, also verified by pre- and postsynaptic marker costaining (anti-synaptotagmin and α-bungarotoxin). Neither soluble agrin nor sensory dorsal root ganglionic neurons showed comparable effects in this model. We concluded that in target skeletal muscle cells the NOS/NO system is controlled by motoneuron contacts by as yet incompletely understood signaling mechanisms. Endogenous NO signaling in myotubes may be essential during synapse formation and plasticity of the neuromuscular system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.