Chromosomal instability not only has a negative effect on survival in triple-negative breast cancer, but also on the well treatable subgroup of luminal A tumors. This suggests a general mechanism independent of subtypes. Increased chromosomal instability (CIN) in triple-negative breast cancer (TNBC) is attributed to a defect in the DNA repair pathway homologous recombination. Homologous recombination (HR) prevents genomic instability by repair and protection of replication. It is unclear whether genetic alterations actually lead to a repair defect or whether superior signaling pathways are of greater importance. Previous studies focused exclusively on the repair function of HR. Here, we show that the regulation of HR by the intra-S-phase damage response at the replication is of overriding importance. A damage response activated by Ataxia telangiectasia and Rad3 related-checkpoint kinase 1 (ATR-CHK1) can prevent replication stress and leads to resistance formation. CHK1 thus has a preferred role over HR in preventing replication stress in TNBC. The signaling cascade ATR-CHK1 can compensate for a double-strand break repair error and lead to resistance of HR-deficient tumors. Established methods for the identification of HR-deficient tumors for Poly(ADP-Ribose)-Polymerase 1 (PARP1) inhibitor therapies should be extended to include analysis of candidates for intra-S phase damage response.
The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.