This article focuses on the optimization of a complex system which is composed of several subsystems. On the one hand, these subsystems are subject to multiple objectives, local constraints as well as local variables, and they are associated with an own, subsystemdependent decision maker. On the other hand, these subsystems are interconnected to each other by global variables or linking constraints. Due to these interdependencies, it is in general not possible to simply optimize each subsystem individually to improve the performance of the overall system. This article introduces a formal graph-based representation of such complex systems and generalizes the classical notions of feasibility and optimality to match this complex situation. Moreover, several algorithmic approaches are suggested and analyzed.
Multiobjective combinatorial optimization problems are known to be hard problems for two reasons: their decision versions are often NP-complete, and they are often intractable. Apart from this general observation, are there also variants or cases of multiobjective combinatorial optimization problems that are easy and, if so, what causes them to be easy? This article is a first attempt to provide an answer to these two questions. Thereby, a systematic description of reasons for easiness is envisaged rather than a mere collection of special cases. In particular, the borderline of easy and hard multiobjective optimization problems is explored.
In this article, we introduce the rectangular knapsack problem as a special case of the quadratic knapsack problem consisting in the maximization of the product of two separate knapsack profits subject to a cardinality constraint. We propose a polynomial time algorithm for this problem that provides a constant approximation ratio of 4.5. Our experimental results on a large number of artificially generated problem instances show that the average ratio is far from theoretical guarantee. In addition, we suggest refined versions of this approximation algorithm with the same time complexity and approximation ratio that lead to even better experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.