Sequence polymorphisms (SPs) can serve as genetic markers for quantitative polymerase chain reactions (qPCR) for chimerism analysis, providing a significantly higher sensitivity compared to short tandem repeat PCR. In this study, a panel of 29 selected markers was evaluated in 317 patients with leukemia and myelodysplastic syndrome, who received allogeneic stem cell transplantation. In total, 5415 posttransplantation samples were analyzed. Recipient genotype discrimination was possible in 96% with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Marker specific standard dilution series from volunteers' DNA served as standard for quantification of chimerism. Sensitivity of the method was < or =1 x 10-3 (0.1% of recipient cells) in 83.3% of the assays. By this method, it was possible to very accurately detect autologous signals in the range from 0% to 0.5% (95% confidence interval [CI] +/-0.2), from 0.5% to 1% (95% CI +/-0.4), from 1% to 2% (95% CI +/-0.6) and from 2% to 5% (95% CI +/-1.2). Reproducibility of the quantified autologous signals was independent from the amount of DNA. This is the first report on a SP-based chimerism system allowing for the performance of chimerism analyses for virtually all patients with high sensitivity, excellent reproducibility, and precision of measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.