The absence of SP and SNF reduces pain sensitivity and mechanical stability of the bone in general. The micro-architecture of the bone is profoundly impaired in the absence of intact SNF with a less drastic effect in SP-deficient mice. Both sympathetic and sensory neurotransmitters are indispensable for proper callus differentiation. Importantly, the absence of SP reduces bone formation rate whereas the absence of SNF induces bone resorption rate. Notably, fracture chondrocytes produce SP and its receptor NK1 and are positive for α-adrenoceptors indicating an endogenous callus signaling loop. We propose that sensory and sympathetic neurotransmitters have crucial trophic effects which are essential for proper bone formation in addition to their classical neurological actions.
Porcine flexor and bovine extensor tendons are eligible substitutes with similar stiffness and high failure loads compared with human cadaveric semitendinosus tendons in in vitro studies.
Beside the distance from tendon gap, the type of linkage of the suture material across and beneath the epitendineum is important for biomechanical stability. Simple-running suture is easy to use, even with a slight increase of the distance from tendon gap significantly increases biomechanical strength. For future repairs of flexor tendon injuries, 3 mm stitch length is highly recommended for simple peripheral suture, while the Halsted-mattress suture unites the most important qualities: biomechanically strong, most part of suture material placed epitendinous, and not too complicated to perform.
BackgroundThe overexpression of tumor necrosis factor (TNF)-α leads to systemic as well as local loss of bone and cartilage and is also an important regulator during fracture healing. In this study, we investigate how TNF-α inhibition using a targeted monoclonal antibody affects fracture healing in a TNF-α driven animal model of human rheumatoid arthritis (RA) and elucidate the question whether enduring the anti TNF-α therapy after trauma is beneficial or not.MethodsA standardized femur fracture was applied to wild type and human TNF-α transgenic mice (hTNFtg mice), which develop an RA-like chronic polyarthritis. hTNFtg animals were treated with anti-TNF antibody (Infliximab) during the fracture repair. Untreated animals served as controls. Fracture healing was evaluated after 14 and 28 days of treatment by clinical assessment, biomechanical testing and histomorphometry.ResultsHigh levels of TNF-α influence fracture healing negatively, lead to reduced cartilage and more soft tissue in the callus as well as decreased biomechanical bone stability. Blocking TNF-α in hTNFtg mice lead to similar biomechanical and histomorphometrical properties as in wild type.ConclusionsHigh levels of TNF-α during chronic inflammation have a negative impact on fracture healing. Our data suggest that TNF-α inhibition by an anti-TNF antibody does not interfere with fracture healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.