The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous curvature in the outer leaflets of cell membranes. Our study provides novel insight into the understanding of how IFITM protein family restricts viral membrane fusion and infection.
Detecting membrane potentials is critical for understanding how neuronal networks process information. We report a vibrational spectroscopic signature of neuronal membrane potentials identified through hyperspectral stimulated Raman scattering (SRS) imaging of patched primary neurons. High-speed SRS imaging allowed direct visualization of puff-induced depolarization of multiple neurons in mouse brain slices, confirmed by simultaneous calcium imaging. The observed signature, partially dependent on sodium ion influx, is interpreted as ion interactions on the CH Fermi resonance peak in proteins. By implementing a dual-SRS balanced detection scheme, we detected single action potentials in electrically stimulated neurons. These results collectively demonstrate the potential of sensing neuronal activities at multiple sites with a label-free vibrational microscope.
Cellular membrane alterations are commonly observed in many diseases, including Alzheimer's disease (AD). Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s) underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.
Previously it has been hypothesized that the granulopoietic and erythropoietic lineages may compete for differentiating stem cells. According to this hypothesis one would expect that a stimulation of granulopoiesis by G-CSF administration would lead to a reduction of the stem cell pool and be followed by a decline of erythropoietic progenitor numbers. In addition one would expect an enhanced response of granulopoiesis if G-CSF administration were combined with suppression of erythropoiesis by red cell transfusion. To evaluate whether this hypothesis holds true C57bl mice were injected subcutaneously for 6 d with 3.75 micrograms rh G-CSF/mouse/d (150 micrograms G-CSF/kg body weight/d). Marrow CFU-S numbers showed an increase to 160% on day 2, followed by a decrease to 50% of control on day 6. Splenic and peripheral blood CFU-S increased 20-fold and 10-fold, respectively. Marrow CFU-E declined to 40% of the control value. Splenic CFU-E increased 10-fold. The increase in marrow CFU-GM numbers ranged between 140% and 180%. CFU-GM obtained from the spleen and the peripheral blood increased 60-fold and 15-fold, respectively. Regarding the CFU-S and CFU-GM a similar pattern of response was found in an experiment where rh G-CSF administration was combined with an additional red cell transfusion. These data do not provide convincing evidence for an exhaustion of haemopoietic stem cells during treatment with G-CSF. They rather suggest that an important side effect of G-CSF treatment is a release of CFU-S and progenitors from the marrow to the peripheral blood and a reseeding in the spleen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.