BackgroundMesenchymal stem cell–derived extracellular vesicles (EVs) are believed to be cardioprotective in myocardial infarct. The objective of this study was to examine the effects of human mesenchymal cell–derived EV injection on cardiac function, myocardial blood flow, and vessel density in the setting of chronic myocardial ischemia.Methods and ResultsTwenty‐three Yorkshire swine underwent placement of an ameroid constrictor on their left circumflex artery. Two weeks later, the animals were split into 2 groups: the control group (CON; n=7) and the EV myocardial injection group (MVM; n=10). The MVM group underwent myocardial injection of 50 μg of EVs in 2 mL 0.9% saline into the ischemic myocardium. Five weeks later, the pigs underwent a harvest procedure, and the left ventricular myocardium was analyzed. Absolute blood flow and the ischemic/nonischemic myocardial perfusion ratio were increased in the ischemic myocardium in the MVM group compared with the CON group. Pigs in the MVM group had increased capillary and arteriolar density in the ischemic myocardial tissue compared with CON pigs. There was an increase in expression of the phospho–mitogen‐activated protein kinase/mitogen‐activated protein kinase ratio, the phospho–endothelial nitric oxide synthase/endothelial nitric oxide synthase ratio, and total protein kinase B in the MVM group compared with CON. There was an increase in cardiac output and stroke volume in the MVM group compared with CON.ConclusionsIn the setting of chronic myocardial ischemia, myocardial injection of human mesenchymal cell–derived EVs increases blood flow to ischemic myocardial tissue by induction of capillary and arteriolar growth via activation of the protein kinase B/endothelial nitric oxide synthase and mitogen‐activated protein kinase signaling pathways resulting in increased cardiac output and stroke volume.
Background Calpain over-expression is implicated in aberrant angiogenesis. We hypothesized that calpain inhibition (CI, MDL28170) would improve collateral perfusion in a swine model with hypercholesterolemia and chronic myocardial ischemia. Methods and Results Yorkshire swine fed a high cholesterol diet for 4 weeks underwent surgical placement of an ameroid constrictor to their left circumflex coronary artery. Three weeks later, animals received either: no drug, high cholesterol control group (HCC; n= 8); low dose CI (0.12 mg/kg; LCI, n= 9); or high dose CI (0.25 mg/kg; HCI, n= 8). The heart was harvested after 5 weeks. There was a trend toward increased right to left collateral vessels on angiography with HCI. Myocardial perfusion in ischemic myocardium significantly improved with HCI at rest and with demand pacing (p = 0.016 and 0.011). Endothelium-dependent microvessel relaxation was significantly improved with LCI (p = 0.001). There was a significant increase in capillary density, with LCI and HCI (p= 0.01 and 0.01), and arteriolar density with LCI (p= 0.001). CI significantly increased several proangiogenic proteins including VEGF (p= 0.02), VEGFR1 (p= 0.003), VEGFR2 (p= 0.003) and talin, a microvascular structural protein (p= 0.0002). There was a slight increase in proteins implicated in endothelial-dependent (NO Mediated) relaxation including ERK, p-ERK and iNOS with CI. Conclusions In the setting of hypercholesterolemia, CI improved perfusion, with a trend toward increased collateralization on angiography and increased capillary and arteriolar densities in ischemic myocardium. CI also improved endothelium-dependent microvessel relaxation and increased expression of proteins implicated in angiogenesis and vasodilatation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.