Despite decades of research, our understanding of the processes controlling late-stage atherosclerotic plaque stability remains poor. A prevailing hypothesis is that reducing inflammation may improve advanced plaque stability, as recently tested in the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial, in which post-myocardial infarction subjects were treated with an IL-1β antibody. Here, we performed intervention studies in which smooth muscle cell (SMC) lineage-tracing Apoe mice with advanced atherosclerosis were treated with anti-IL-1β or IgG control antibodies. Surprisingly, we found that IL-1β antibody treatment between 18 and 26 weeks of Western diet feeding induced a marked reduction in SMC and collagen content, but increased macrophage numbers in the fibrous cap. Moreover, although IL-1β antibody treatment had no effect on lesion size, it completely inhibited beneficial outward remodeling. We also found that SMC-specific knockout of Il1r1 (encoding IL-1 receptor type 1) resulted in smaller lesions nearly devoid of SMCs and lacking a fibrous cap, whereas macrophage-selective loss of IL-1R1 had no effect on lesion size or composition. Taken together, these results show that IL-1β has multiple beneficial effects in late-stage murine atherosclerosis, including promotion of outward remodeling and formation and maintenance of an SMC- and collagen-rich fibrous cap.
Vascular smooth muscle cells (SMC) play a major role in vascular diseases, such as atherosclerosis and hypertension. It has long been established in vitro that contractile SMC can phenotypically switch to function as proliferative and/or migratory cells in response to stimulation by oxidative stress, growth factors, and inflammatory cytokines. Reactive oxygen species (ROS) are oxidative stressors implicated in driving vascular diseases, shifting cell bioenergetics, and increasing SMC proliferation, migration, and apoptosis. In this review, we summarize our current knowledge of how disruptions to redox balance can functionally change SMC and how this may influence vascular disease pathogenesis. Specifically, we focus on our current understanding of the role of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 1, 4, and 5 in SMC function. We also review the evidence implicating mitochondrial fission in SMC phenotypic transitions and mitochondrial fusion in maintenance of SMC homeostasis. Finally, we discuss the importance of the redox regulation of the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway as a potential oxidative and therapeutic target for regulating SMC function.
The nitric oxide/soluble guanylyl cyclase (NO-sGC) signaling pathway regulates the cardiovascular, neuronal, and gastrointestinal systems. Impaired sGC signaling can result in disease and system-wide organ failure. This review seeks to examine the redox control of sGC through heme and cysteine regulation while discussing therapeutic drugs that target various conditions. Heme regulation involves mechanisms of insertion of the heme moiety into the sGC protein, the molecules and proteins that control switching between the oxidized (Fe) and reduced states (Fe), and the activity of heme degradation. Modifications to cysteine residues by S-nitrosation on the α1 and β1 subunits of sGC have been shown to be important in sGC signaling. Moreover, redox balance and localization of sGC is thought to control downstream effects. In response to altered sGC activity due to changes in the redox state, many therapeutic drugs have been developed to target decreased NO-sGC signaling. The importance and relevance of sGC continues to grow as sGC dysregulation leads to numerous disease conditions.
Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that ) we have previously identified a sequence variant associated with age-related atherosclerosis, ) COL15A1 is a matrix organizer enhancing tissue structural integrity, and) small interfering RNA-mediated knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis. We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.