Context Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease, affecting approximately 3 in 10 obese children worldwide. Objective We aimed to investigate the potential relationship between gut microbiota and NAFLD in obese youth, while considering the role of PNPLA3 rs738409, a strong genetic contributor to NAFLD. Design In this cross-sectional study, participants completed abdominal MRI to measure hepatic fat fraction (HFF), oral glucose tolerance test, and PNPLA3 rs738409 genotyping. Fecal samples were collected to analyze the V4 region of the 16S rRNA gene for intestinal bacteria characterization. Setting Yale Pediatric Obesity Clinic. Participants Obese youth (BMI > 95th percentile) with NAFLD (HFF ≥ 5.5%; n=44) and without NAFLD (HFF < 5.5%; n=29). Main Outcome Measure Shannon-Wiener diversity index values and proportional bacterial abundance by NAFLD status and PNPLA3 genotype. Results Subjects with NAFLD had decreased bacterial alpha-diversity compared to those without NAFLD (p=0.013). Subjects with NAFLD showed a higher Firmicutes to Bacteroidetes (F/B) ratio (p=0.019) and lower abundance of Bacteroidetes (p=0.010), Prevotella (p=0.019), Gemmiger (p=0.003), and Oscillospira (p=0.036). F/B ratio, Bacteroidetes, Gemmiger, and Oscillospira were associated with HFF when controlling for group variations. We also observed an additive effect on HFF by PNPLA3 rs738409 and Gemmiger, and PNPLA3 rs738409 and Oscillospira. Conclusions Obese youth with NAFLD have a different gut microbiota composition than those without NAFLD. These differences were still statistically significant when controlling for factors associated with NAFLD, including PNPLA3 rs738409.
Patterns of abdominal fat distribution (for example, a high vs. low visceral adipose tissue [VAT]/[VAT + subcutaneous adipose tissue (SAT)] ratio), independent of obesity, during adolescence carry a high risk for insulin resistance and type 2 diabetes. Longitudinal follow-up of a cohort of obese adolescents has recently revealed that a high ratio (high VAT/[VAT + SAT]) is a major determinant of fatty liver and metabolic impairment over time, with these effects being more pronounced in girls than in boys. To unravel the underlying metabolic alterations associated with the unfavorable VAT/(VAT + SAT) phenotype, we used the 2H2O labeling method to measure the turnover of adipose lipids and cells in the subcutaneous abdominal and gluteal/femoral adipose tissue (SAT) of weight-stable obese adolescent girls with a similar level of obesity but discordant VAT/(VAT + SAT) ratios. Girls with the unfavorable (high VAT/[VAT + SAT]) phenotype exhibited higher in vivo rates of triglyceride (TG) turnover (representing both lipolysis and synthesis at steady state), without significant differences in de novo lipogenesis in both abdominal and gluteal depots, compared with obese girls with the favorable phenotype. Moreover, mature adipocytes had higher turnover, with no difference in stromal vascular cell proliferation in both depots in the metabolically unfavorable phenotype. The higher TG turnover rates were significantly correlated with higher intrahepatic fat stores. These findings are contrary to the hypothesis that impaired capacity to deposit TGs or proliferation of new mature adipocytes are potential mechanisms for ectopic fat distribution in this setting. In summary, these results suggest that increased turnover of TGs (lipolysis) and of mature adipocytes in both abdominal and gluteal SAT may contribute to metabolic impairment and the development of fatty liver, even at this very early stage of disease.
AimTo evaluate whether intrahepatic fat accumulation contributes to impaired insulin clearance and hepatic insulin resistance across different ethnic groups.MethodsThe intrahepatic fat content (HFF%) was quantified by magnetic resonance imaging in a multi‐ethnic cohort of 632 obese youths aged 7‐18 years at baseline and after a 2‐year follow‐up. Insulin secretion rate (ISR), endogenous insulin clearance (EIC) and hepatic insulin resistance index (HIRI) were estimated by modelling glucose, insulin and C‐peptide data during 3‐hour, 9‐point oral glucose tolerance tests.ResultsAfrican American youths exhibited the lowest HFF% and a prevalence of non‐alcoholic fatty liver disease (NAFLD) less than half of that shown by Caucasians and Hispanics. Furthermore, African Americans had lower EIC and glucose‐stimulated ISR, despite similar HIRI and plasma insulin levels, compared with Caucasians and Hispanics. EIC and HIRI were markedly reduced in individuals with NAFLD and declined across group‐specific HFF% tertiles in all ethnic groups. Consistently, the HFF% correlated with EIC and HIRI, irrespective of the ethnic background, after adjustment for age, sex, ethnicity, adiposity, waist‐hip ratio, pubertal status and plasma glucose levels. An increased HFF% at follow‐up was associated with decreased EIC and increased HIRI across all groups.ConclusionsIntrahepatic lipid accumulation is associated with reduced insulin clearance and hepatic insulin sensitivity in obese youths, irrespective of their ethnic background.
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is often the precursor for more serious liver conditions such as nonalcoholic steatohepatitis and cirrhosis. Although the gut microbiome has been implicated in the development of NAFLD, the strong association of obesity with NAFLD and its effect on microbiome structure has made interpreting study outcomes difficult. In the present study, we examined the taxonomic and functional differences between the microbiomes of youth with obesity and with and without NAFLD. Shotgun metagenome sequencing was performed to profile the microbiomes of 36 subjects, half of whom were diagnosed with NAFLD using abdominal magnetic resonance imaging. Beta diversity analysis showed community‐wide differences between the groups (p = 0.002). Specific taxonomic differences included increased relative abundances of the species Fusicatenibacter saccharivorans (p = 0.042), Romboutsia ilealis (p = 0.046), and Actinomyces sp. ICM47 (p = 0.0009), and a decrease of Bacteroides thetaiotamicron (p = 0.0002), in the NAFLD group as compared with the non‐NAFLD group. At the phylum level, Bacteroidetes (p < 0.0001) was decreased in the NAFLD group. Functionally, branched‐chain amino acid (p = 0.01343) and aromatic amino acid (p = 0.01343) synthesis pathways had increased relative abundances in the NAFLD group along with numerous energy use pathways, including pyruvate fermentation to acetate (p = 0.01318). Conclusion: Community‐wide differences were noted based on NAFLD status, and individual bacterial species along with specific metabolic pathways were identified as potential drivers of these differences. The results of the present study support the idea that the NAFLD phenotype displays a differentiated microbial and functional signature from the obesity phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.