As part of the degradation process, it is believed that most plastic debris becomes brittle over time, fragmenting into progressively smaller particles. The smallest of these particles, known as microplastics, have been receiving increased attention because of the hazards they present to wildlife. To understand the process of plastic degradation in an intertidal salt marsh habitat, strips (15.2 cm × 2.5 cm) of high-density polyethylene, polypropylene, and extruded polystyrene were field-deployed in June 2014 and monitored for biological succession, weight, surface area, ultraviolet (UV) transmittance, and fragmentation. Subsets of strips were collected after 4 wk, 8 wk, 16 wk, and 32 wk. After 4 wk, biofilm had developed on all 3 polymers with evidence of grazing periwinkles (Littoraria irrorata). The accreting biofilm resulted in an increased weight of the polypropylene and polystyrene strips at 32 wk by 33.5% and 167.0%, respectively, with a concomitant decrease in UV transmittance by approximately 99%. Beginning at 8 wk, microplastic fragments and fibers were produced from strips of all 3 polymers, and scanning electron microscopy revealed surface erosion of the strips characterized by extensive cracking and pitting. The results suggest that the degradation of plastic debris proceeds relatively quickly in salt marshes and that surface delamination is the primary mechanism by which microplastic particles are produced in the early stages of degradation. Environ Toxicol Chem 2016;35:1632-1640. © 2016 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.