Aims/hypothesis Obesity and hepatic steatosis are risk factors for gestational diabetes mellitus (GDM), a common complication of pregnancy. Adiponectin is a fat-derived hormone that improves hepatic steatosis and insulin sensitivity. Low levels of circulating adiponectin are associated with GDM development. We hypothesised that adiponectin deficiency causes fatty liver during pregnancy, contributing to the development of GDM. Methods To determine the role of adiponectin in fatty liver development during pregnancy, we compared pregnant (third week of pregnancy) adiponectin knockout (KO) mice (strain B6;129-Adipoq tm1Chan /J) with wild-type mice and assessed several variables of hepatic lipid metabolism and glucose homeostasis. The impact of adiponectin supplementation was measured by administering adenovirus-mediated full-length adiponectin at the end of the second week of pregnancy and comparing with green fluorescent protein control. Results In the third week of pregnancy, fasted pregnant adiponectin KO mice were hyperglycaemic on a low-fat diet (9.2 mmol/l vs 7.7 mmol/l in controls, p<0.05) and were glucose and pyruvate intolerant relative to wild-type mice. Pregnant adiponectin KO mice developed hepatic steatosis and a threefold elevation in hepatic triacylglycerols (p<0.05) relative to wild-type mice. Gestational weight gain and food consumption were similar in KO and wild-type mice. Adenoviral-mediated adiponectin supplementation to pregnant adiponectin KO mice improved glucose tolerance, prevented fasting hyperglycaemia and attenuated fatty liver development. Conclusions/interpretation Adiponectin deficiency increased hepatic lipid accumulation during the period of pregnancy associated with increased fat utilisation. Consequently, adiponectin deficiency contributed to glucose intolerance, dysregulated gluconeogenesis and hyperglycaemia, all of which are characteristic of GDM. Increasing adiponectin in the last week of pregnancy alleviated hepatic steatosis and restored normal glucose homeostasis during pregnancy.
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.