Wildlife capture, and the data collection associated with it, has led to major advancements in ecology that are integral to decision making pertaining to wildlife conservation. Capturing wildlife, however, can cause lethal and non-lethal risks to animals. Understanding the factors that contribute to the level of risk involved in wildlife capture is therefore important for the development and implementation of the safest and most effective methodologies. We used data from 736 animal captures of 389 individuals for 2 subspecies of female bighorn sheep (Rocky Mountain bighorn [Ovis canadensis canadensis], Sierra Nevada bighorn sheep [O. c. sierrae]) in Wyoming and California, USA, in 2002-2020 to evaluate the degree and extent of time that capture via helicopter net-gunning affects survival. We compared pre-and post-capture survival during a 10-week window centered on a capture event, and post-capture survival between captured animals and animals that were monitored but not captured during the 10-week window. Additionally, we evaluated the effects of handling techniques (number of times captured, season of capture event, handling time, chase time, and body temp) and biological factors (age and nutritional condition)
Food quality and availability, when combined with energetic demands in seasonal environments, shape resource acquisition and allocation by animals and hold consequences for life‐history strategies. In long‐lived species with extensive maternal care, regulation of somatic reserves of energy and protein can occur in a risk‐sensitive manner, wherein resources are preferentially allocated to support survival at the cost of investment in reproduction. We investigated how Rocky Mountain bighorn sheep (Ovis canadensis), an alpine mammal in a highly seasonal environment, allocates somatic reserves across seasons. In accordance with the hypothesis of risk‐sensitive resource allocation, we expected accretion and catabolism of somatic reserves to be regulated relative to preseason nutritional state, reproductive state, and variation among populations in accordance with local environmental conditions. To test that hypothesis, we monitored seasonal changes in percent ingesta‐free body fat (IFBFat) and ingesta‐free, fat‐free body mass (IFFFBMass) in three populations of bighorn sheep in northwest Wyoming between 2015 and 2019 through repeated captures of female sheep in December and March of each year in a longitudinal study design. Regulation of somatic reserves was risk‐sensitive and varied relative to the amount of somatic reserves an animal had at the beginning of the season. Regulation of fat reserves was sensitive to reproductive state and differed by population, particularly over the summer. In one population with low rates of recruitment of young, sheep that recruited offspring lost fat over the summer in contrast to the other two populations where sheep that recruited gained fat. And yet, all populations exhibited similar changes in fat catabolism and risk sensitivity over winter. The magnitude of body fat and mass change across seasons may be indicative of sufficiency of seasonal ranges to meet energetic demands of survival and reproduction. Risk‐sensitive allocation of resources was pervasive, suggesting nutritional underpinnings are foundational to behavior, vital rates, and, ultimately, population dynamics. For species living in alpine environments, risk‐sensitive resource allocation may be essential to balance investment in reproduction with ensuring survival.
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.
Capture and handling techniques for individual-based, longterm research that tracks the life history of animals by recapturing the same individuals for several years has vastly improved study inferences and our understanding of animal ecology. Yet there are corresponding risks to study animals associated with physical trauma or capture myopathy that can occur during or following capture events. Rarely has empirical evidence existed to guide decisions associated with understanding the magnitude of capture-related risks, how to reduce these risks when possible, and implications for mortality censoring and survival estimates. We used data collected from 2,399 capture events of mule deer (Odocoileus hemionus) via helicopter net-gunning to compare daily survival probabilities within a 10-week period centered on a capture event and evaluated how animal age, nutritional condition (body fat), and various handling methods influenced survival before, during, and following a capture event. Direct mortality resulting from
Nutrition underpins survival and reproduction in animal populations; reliable nutritional biomarkers are therefore requisites to understanding environmental drivers of population dynamics. Biomarkers vary in scope of inference and sensitivity, making it important to know what and when to measure to properly quantify biological responses. We evaluated the repeatability of three nutritional biomarkers in a large, iteroparous mammal to evaluate the level of intrinsic and extrinsic contributions to those traits. During a long-term, individual-based study in a highly variable environment, we measured body fat, body mass, and lean mass of mule deer (Odocoileus hemionus) each autumn and spring. Lean mass was the most repeatable biomarker (0.72 autumn; 0.61 spring), followed by body mass (0.64 autumn; 0.53 spring), and then body fat (0.22 autumn; 0.01 spring). High repeatability in body and lean mass likely reflects primary structural composition, which is conserved across seasons. Low repeatability of body fat supports that it is the primary labile source of energy that is largely a product of environmental contributions of the previous season. Based on the disparate levels in repeatability among nutritional biomarkers, we contend that body and lean mass are better indicators of nutritional legacies (e.g., maternal effects), whereas body fat is a direct and sensitive reflection of recent nutritional gains and losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.