Many insecticide-exposed H. halys adults retained significant mobility and flight capacity, with flight most pronounced immediately after exposure. These results suggest that brief exposure periods to efficacious insecticides will result in high dispersal and low mortality. Therefore, management strategies that enhance the retention of H. halys on insecticide-coated surfaces should be considered to ensure that adults are exposed to a lethal dose of insecticide. © 2016 Society of Chemical Industry.
The brown marmorated stink bug, or Halyomorpha halys, is an invasive pest in North America and Europe that causes severe agricultural damage and nuisance problems for homeowners; and it is originally from China, Taiwan, and the Republic of Korea. While the natural enemy community of H. halys has been evaluated in several agroecosystems, it has not been examined where H. halys overwinters in anthropogenic structures. The aims of the current study were to evaluate 1) whether spider webs commonly found in the home and yard can successfully ensnare H. halys, 2) whether entanglement resulted in consumption by spiders inhabiting the webs, and 3) how frequently H. halys becomes entangled in webs under ambient conditions. To accomplish this, adult H. halys were introduced into webs in and near anthropogenic structures in West Virginia and Maryland, United States, and the behavior of spiders was observed for 5-min intervals at 0, 1, 2, and 24 h after introduction. In addition, a survey of webs was performed to determine the frequency with which spiders naturally capture H. halys inside buildings and in the landscape. Overall, the study found seven spider families in anthropogenic structures. Adult H. halys that were introduced into the webs of
By potentially disrupting crop production, climate change has been implicated as a threat to global food security. We focus on two elements of climate change: elevated atmospheric carbon dioxide concentration, or e[CO2], and reduced water availability, as caused by drought. Both variables have been shown to have effects on crop physiology, although there is considerable evidence of interactions and moderation by species-specific differences. Measuring traits helps scale environmental effects up to functional responses, and we focused on traits connected to photosynthesis, which has a close association with crop yield. We measured the response of four physiological traits—quantum photosynthetic yield, chlorophyll content, root:shoot ratio and leaf area—across a diverse set of seven annual crop species grown under three levels of e[CO2] (450, 575 and 700 ppm) and two levels of water availability (minimum ~45 and ~15% VWC) in a growth chamber. Species included barley, durum wheat, maize, oats, sorghum, pinto bean and sunflower. Our regression analysis focused on testing for interactions between e[CO2] and water limitation and determining relative effect sizes of climate change impacts across species, data that can be used for species-specific modeling or determining appropriate levels of environmental variables in free-air CO2 enrichment studies designed to extend small-scale experimental results to the field. Across all species and all traits, the strongest effect of e[CO2] occurred from 450 to 575 ppm, with only marginal differences from 575 to 700 ppm. We found substantial declines in leaf area across all species as a result of e[CO2] and wide variability in leaf area responses to water limitation. Other traits showed weak and variable responses to both e[CO2] and water limitation. While our data confirm that elements of global change, especially increased atmospheric CO2 concentration, do affect traits related to photosynthesis, we found no discernible pattern to suggest which crops might be more resistant to e[CO2].
The development of shale petroleum resources has industrialized rural landscapes. We investigated how traffic from energy development expands and intensifies the road-effect zone through increased dust exposure, and how birds and invertebrates inhabiting the road-effect zone in agricultural areas of the Bakken region might be affected by dust exposure. We used dust collectors, trail cameras, and sweep-netting at increasing distances from unpaved roads to determine dust deposition, relative bird abundance, and invertebrate abundance, respectively. We found that traffic associated with fracking along unpaved roads emitted substantial dust 180 m into adjacent crop fields. But neither bird abundance or behavior, nor invertebrate abundance or community composition, appeared to be affected by dust or traffic. These findings suggest that wildlife in previously intensified agricultural landscapes like crop fields are resilient to intensification from energy development, but the same might not be true for wildlife in previously undisturbed habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.