The probiotic potential of 47 selected strains ofLactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains,Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp.lactis CHCC 2329, and L. casei subsp.alactus CHCC 3137, were selected for in vivo studies. The daily consumption by 12 healthy volunteers of two doses of 1010 freeze-dried bacteria of the selected strains for 18 days was followed by a washout period of 17 days. Fecal samples were taken at days 0 and 18 and during the washout period at days 5 and 11.Lactobacillus isolates were initially identified by API 50CHL and internal transcribed spacer PCR, and their identities were confirmed by restriction enzyme analysis in combination with pulsed-field gel electrophoresis. Among the tested strains, L. rhamnosus 19070-2, L. reuteri DSM 12246, and L. rhamnosus LGG were identified most frequently in fecal samples; they were found in 10, 8, and 7 of the 12 samples tested during the intervention period, respectively, whereas reisolations were less frequent in the washout period. The bacteria were reisolated in concentrations from 105 to 108 cells/g of feces. Survival and reisolation of the bacteria in vivo appeared to be linked to pH tolerance, adhesion, and antimicrobial properties in vitro.
While it is known that phytic acid, inositol hexaphosphate, has a negative effect on zinc and calcium absorption, the effects of inositol which is phosphorylated to a lesser extent are less known. We have prepared inositol triphosphate (IP-3), tetraphosphate (IP-4), pentaphosphate (IP-5) and hexaphosphate (IP-6) by hydrolysis of sodium phytate and separation by ion-exchange chromatography and have studied their effect on zinc and calcium absorption. Using a suckling rat pup model, we found that liver uptake of 65Zn after 6 h was 5% of the total dose from solutions of IP-6, 19% from IP-5, 28% from IP-4, 29% from IP-3 and 31% from ZnCl2 (control). Non-absorbed calcium was 17%, 1.4%, 0.5%, 0.5% and 0.5% of the given dose of 45Ca, respectively. Thus, at a high degree of phosphorylation (IP-6, IP-5), zinc and calcium uptake was inhibited, while no effect was observed for the other phosphates. Consequently, total "phytate" analysis, which includes inositol phosphates with varying degrees of phosphorylation, can give misleading information with regard to mineral availability. In addition, even limited dephosphorylation of inositol hexaphosphate can have a positive effect on mineral absorption.
Seven men and seven women participated in a randomized crossover trial to study the effect of intake of parsley (Petroselinum crispum), containing high levels of the flavone apigenin, on the urinary excretion of flavones and on biomarkers for oxidative stress. The subjects received a strictly controlled diet low in flavones and other naturally occurring antioxidants during the 2 weeks of intervention. This basic diet was supplemented with parsley providing 3⋅73-4⋅49 mg apigenin/MJ in one of the intervention weeks. Urinary excretion of apigenin was 1⋅59-409⋅09 g/MJ per 24 h during intervention with parsley and 0-112⋅27 g/MJ per 24 h on the basic diet (P Ͻ 0⋅05). The fraction of apigenin intake excreted in the urine was 0⋅58 (SE 0⋅16) % during parsley intervention. Erythrocyte glutathione reductase (EC 1.6.4.1; GR) and superoxide dismutase (EC 1.15.1.1; SOD) activities increased during intervention with parsley (P Ͻ 0⋅005) as compared with the levels on the basic diet, whereas erythrocyte catalase (EC 1.11.1.6) and glutathione peroxidase (EC 1.11.1.9) activities did not change. No significant changes were observed in plasma protein 2-adipic semialdehyde residues, a biomarker of plasma protein oxidation. In this short-term investigation, an overall decreasing trend in the activity of antioxidant enzymes was observed during the 2-week study. The decreased activity of SOD was strongly correlated at the individual level with an increased oxidative damage to plasma proteins. However, the intervention with parsley seemed, partly, to overcome this decrease and resulted in increased levels of GR and SOD. Apigenin: Antioxidant status: Urinary excretionApigenin is a flavone found in vegetables, seasonings (Kühnau, 1976) and oranges (Fernandez de Simon et al. 1992), and it possesses antioxidant activity in vitro (Fraga et al. 1987;van Acker et al. 1996). Potent biological effects of this flavonoid have been described in vitro and in vivo. Apigenin has been ascribed anticarcinogenic (Wei et al. 1989;Birt et al. 1997), anti-inflammatory (Lee et al. 1993 and antimutagenic (Kuo et al. 1992) properties. Thus, development of a biomarker for intake of apigenin is important in order to evaluate the potential health effects of this particular dietary component. There has only been one previously published attempt to determine the urinary excretion of apigenin in human subjects after ingestion of an apigenin-containing camomile (Matricaria recutita) extract (Tschiersch & Hölzl, 1993). However, due to lack of specificity and sensitivity the method failed to detect any apigenin in the urine.Parsley (Petroselinum crispum) contains large amounts of the flavone apigenin (Justesen et al. 1998), and the low concentration of other flavonoids in this plant makes it suitable for an intervention study with a natural source of apigenin.In the present study we report on the relationship between daily intake of parsley and urinary excretion of apigenin. The antioxidative effect of the parsley intervention was investigated by measuring the activity ...
The effect of fats high in individual, prevalent saturated dietary fatty acids on lipoproteins and hemostatic variables in young healthy subjects was evaluated in a randomized strictly controlled metabolic feeding study. Three experimental diets: shea butter (S; 42% stearic acid), palm oil (P; 43% palmitic palmitic acid), and palm-kernel oil with high-oleic sunflower oil (ML; 10% myristic acid, 30% lauric acid) were served to 15 men for 3 wk each, separated by washout periods. Diet S compared with diet P resulted in significant reduction in plasma cholesterol (22%) LDL cholesterol (26%), apolipoprotein B (18%), HDL cholesterol (12%), apolipoprotein A-I (13%), and a 13% lower factor VII coagulant activity (P = 0.001). Similar differences were observed between diets S and ML. In conclusion, intake of shea butter high in stearic acid favorably affects blood lipids and factor VII coagulant activity in young men, compared with fats high in saturated fatty acids with 12-16 carbons.
A potential risk of interactions between micronutrients affecting absorption and bioavailability has to be considered in any supplementation or fortification strategy. At levels of essential micronutrients present in foods, most micronutrients appear to utilise specific absorptive mechanisms and not be vulnerable to interactions. In aqueous solutions and at higher intake levels competition between elements with similar chemical characteristics and uptake by nonregulated processes can take place. These interactions have clearly been demonstrated in experimental absorption studies and to some extent have been confirmed in supplementation studies. Negative effects of iron supplementation on indices of zinc and copper status and of zinc supplementation on iron and copper status have been reported. In contrast, the negative effect of calcium on iron absorption has not been confirmed in long-term supplementation studies. Ascorbic acid has a strong iron absorption promoting potential and in iron deficient populations ascorbic acid supplementation improves iron status. Thus, ascorbic acid supplements or an increased intake of ascorbic acid rich foods could have important public health implications, especially in populations subsisting on a mainly plant food based diet. The effect of poor status of a given micronutrient on absorption and utilisation of other micronutrients should also be considered while developing strategies to improve micronutrient status in a population. Awareness of these interactions, combined with a balanced evaluation of the dietary intake of the population with regard to absorption promoting and inhibiting substances and the risk for multiple deficiencies, could lead to more effective strategies to improve micronutrient status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.