The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond, and those that do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop novel drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs less activity towards metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.
We report the characterization and optimization of drug-like small molecule inhibitors of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme critical for the regulation of extracellular matrix calcification during bone formation and growth. High-throughput screening (HTS) of a small molecule library led to the identification of arylsulfonamides as potent and selective inhibitors of TNAP. Critical structural requirements for activity were determined, and the compounds were subsequently profiled for in vitro activity and bioavailability parameters including metabolic stability and permeability. The plasma levels following subcutaneous administration of a member of the lead series in rat was determined, demonstrating the potential of these TNAP inhibitors as systemically active therapeutic agents to target various diseases involving soft tissue calcification. A representative member of the series was also characterized in mechanistic and kinetic studies.
Tissue-nonspecific alkaline phosphatase (TNAP) plays a central role in regulating extracellular matrix calcification during bone formation and growth. High throughput screening (HTS) for small molecule TNAP inhibitors led to the identification of hits in the sub-micromolar potency range. We report the design, synthesis and in vitro evaluation of a series of pyrazole derivatives of a screening hit which are potent TNAP inhibitors exhibiting IC50 values as low as 5 nM. A representative of the series was characterized in kinetic studies and determined to have a mode of inhibition not previously observed for TNAP inhibitors.
Cachexia is metabolic disorder characterized by anorexia, an increased metabolic rate, and loss of lean body mass. It is a relatively common disorder, and is a pathological feature of diseases such as cancer, HIV infection, and renal failure. Recent studies have demonstrated that cachexia brought about by a variety of illnesses can be attenuated or reversed by blocking activation of the melanocortin 4 subtype receptor (MC4-R) within the central nervous system. Although the potential use of central MC4-R antagonists for the treatment of cachexia was supported by these studies, utility was limited by the need to deliver these agents intracerebroventricularly. In the current study, we present a series of experiments demonstrating that peripheral administration of a small molecule MC4-R antagonist can effectively stimulate daytime (satiated) food intake as well as decrease basal metabolic rate in normal animals. Furthermore, this compound attenuated cachexia and preserved lean body mass in a murine cancer model. These data clearly demonstrate the potential of small molecule MC4-R antagonists in the treatment of cachexia and underscore the importance of melanocortin signaling in the development of this metabolic disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.