Multicomponent reactions (MCRs) have become a mainstay in both academic and industrial synthetic organic chemistry due to their step- and atom-economy advantages over traditional synthetic sequences 1 . Recently, bicyclo[1.1.1]pentane (BCP) motifs have come to the fore as valuable pharmaceutical bioisosteres of benzene rings, and, in particular, 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para -phenyl ring replacements 2 . Often these structures are generated from [1.1.1]propellane via opening of the internal C─C bond, either through the addition of radicals or metal-based nucleophiles 3 - 13 . The resulting propellane-addition adducts are subsequently transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. While this approach has been effective to date, it is clear that a multicomponent reaction that enables single-step access to complex and diverse polysubstituted BCP products would be synthetically advantageous over the current stepwise approaches. Herein we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicycles using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. The reaction operates on short time scales (five minutes to one hour) across multiple (>10) nucleophile classes and can accommodate a diverse array of radical precursors, including those which generate alkyl, α-acyl, trifluoromethyl, and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which has substantially different pharmacokinetic properties to those of its commercial progenitor.
In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.
Orexins (OXs) are peptides produced by perifornical (PeF) and lateral hypothalamic neurons that exert a prominent role in arousal-related processes, including stress. A critical role for the orexin-1 receptor (OX1R) in complex emotional behavior is emerging, such as overactivation of the OX1R pathway being associated with panic or anxiety states. Here we characterize a brain-penetrant, selective, and high-affinity OX1R antagonist, Although compound 56 did not alter spontaneous sleep in rats and in wildtype mice, its administration in orexin-2 receptor knockout mice selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. In a rat model of psychological stress induced by cage exchange, the OX1R antagonist prevented the prolongation of sleep onset without affecting sleep duration. In a rat model of panic vulnerability (involving disinhibition of the PeF OX region) to threatening internal state changes (i.e., intravenous sodium lactate infusion), compound 56 attenuated sodium lactate-induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. In conclusion, OX1R antagonism represents a novel therapeutic strategy for the treatment of various psychiatric disorders associated with stress or hyperarousal states.
In this Communication, we report the direct, catalytic, asymmetric aldol addition of methyl ynones using our dinuclear zinc catalyst. A spontaneous reversal in the sense of enantioinduction was observed for these reactions; formation of the (S)-enantiomer is favored in the early stages (69% ee after 5 min), whereas the (R)-enantiomer is isolated as the major product after prolonged reaction times (97% ee after 22 h). It could be shown that this reversal in enantioselectivity is due to formation of a new catalytic species which incorporates the aldol product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.