The effects of climate change on biodiversity should depend in part on climate displacement rate (climate-change velocity) and its interaction with species' capacity to migrate. We estimated Late Quaternary glacial-interglacial climate-change velocity by integrating macroclimatic shifts since the Last Glacial Maximum with topoclimatic gradients. Globally, areas with high velocities were associated with marked absences of small-ranged amphibians, mammals, and birds. The association between endemism and velocity was weakest in the highly vagile birds and strongest in the weakly dispersing amphibians, linking dispersal ability to extinction risk due to climate change. High velocity was also associated with low endemism at regional scales, especially in wet and aseasonal regions. Overall, we show that low-velocity areas are essential refuges for Earth's many small-ranged species.
Plant functional trait change across a warming tundra biomeThe tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming. Environment-trait relationships across the tundra biomeWe found strong spatial associations between temperature and community height, SLA and LDMC (Fig. 2a, Extended Data Fig. 2 and Supplementary Table 3) across the 117 survey sites. Both height and SLA increased with summer temperature, but the temperaturetrait relationship for SLA was much stronger at wetter than at drier sites. LDMC was negatively related to temperature, and
• Premise of the study: Near-future climate changes are likely to elicit major vegetation changes. Disequilibrium dynamics, which occur when vegetation comes out of equilibrium with climate, are potentially a key facet of these. Understanding these dynamics is crucial for making accurate predictions, informing conservation planning, and understanding likely changes in ecosystem function on time scales relevant to society. However, many predictive studies have instead focused on equilibrium end-points with little consideration of the transient trajectories.• Methods: We review what we should expect in terms of disequilibrium vegetation dynamics over the next 50-200 yr, covering a broad range of research fi elds including paleoecology, macroecology, landscape ecology, vegetation science, plant ecology, invasion biology, global change biology, and ecosystem ecology.• Key results: The expected climate changes are likely to induce marked vegetation disequilibrium with climate at both leading and trailing edges, with leading-edge disequilibrium dynamics due to lags in migration at continental to landscape scales, in local population build-up and succession, in local evolutionary responses, and in ecosystem development, and trailing-edge disequilibrium dynamics involving delayed local extinctions and slow losses of ecosystem structural components. Interactions with habitat loss and invasive pests and pathogens are likely to further contribute to disequilibrium dynamics. Predictive modeling and climate-change experiments are increasingly representing disequilibrium dynamics, but with scope for improvement.• Conclusions: The likely pervasiveness and complexity of vegetation disequilibrium is a major challenge for forecasting ecological dynamics and, combined with the high ecological importance of vegetation, also constitutes a major challenge for future nature conservation.
Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human-wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology.conservation | megafauna | reintroduction | restoration | trophic cascades
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.