This in vitro study investigates the conditions under which "compound 305" is formed. Using HPLC, ESR as well as UV spectroscopy, "compound 305" was largely separated and characterized. It has an absorption peak at 314 nm, which changes after reoxygenation to shorter wavelengths within hours. The retention time of "compound 305" amounts to 10.93 +/- 0.042 min. The formation of "compound 305" does not depend on alloxan (ALX) or reduced glutathione (GSH), but most likely on the steady-state concentration of the paramagnetic derivatives of both reactants (ALX* and GS*). The alloxan radical (ALX*) is formed by either a one-electron transfer from e. g. GSH to alloxan or oxidation of dialuric acid. The concentration of the ALX* was determined to be 12 +/- 3.6 micromol/l using the stable ultramarine radical as an ESR standard. ALX* is stable only under anaerobic conditions. It disappears within 2 min in air. Since formation of "compound 305" needs both ALX* as well as GS*, which are also necessary for the generation of reactive oxygen species (ROS), it is assumed that formation of "compound 305" diminishes the toxicity of alloxan.
The ability of transplanted islets to release insulin after stimulation with glucose was analysed. Three months after islet transplantation into the liver of diabetic rats the liver was perfused in vitro with different glucose-containing perfusion fluids. Transplanted islets preserve their functional integrity for at least three months and contribute substantially to the observed amelioration of the diabetic state. They are able to release insulin after stimulation with 16 mM glucose with a typical biphasic secretion profile. Insulin containing islets were identified by light microscopy in the tissue of the liver.
We investigated the ability of intraportal transplanted islets to release insulin and glucagon after stimulation with arginine. Furthermore, the islet volume and hormone content of the recipient pancreas were analyzed. Three months after syngeneic portal islet transplantation the liver of STZ-diabetic rats was perfused in vitro in the presence of different arginine concentrations. Transplanted islets preserve their functional integrity for at least three months indicated by a stimulus adequate insulin release and contribute substantially to the observed amelioration of the diabetic state. The islet and B-cell volume as well as the insulin and glucagon content of the recipient pancreas are still markedly decreased three months after islet transplantation when compared with healthy controls.
This in vitro study investigated the formation of hydroxyl radicals (*OH) under anaerobic conditions through the direct reaction between paraquat radicals (PQ(+)*) and hydrogen peroxide (H(2)O(2)) by quantitative UV-VIS and electron spin resonance (ESR) spectroscopy. PQ(+)* was formed by paraquat reduction using either sodium dithionite or the xanthine/xanthine oxidase reaction as electron donors. The anaerobic formation of PQ(+)* was quantified both by measuring light absorption at 605 nm or by ESR techniques respectively, using either the absorption coefficient or ultramarine as a stable spin standard. Detection of *OH took place with aid of the spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline- N-oxide (DEPMPO). Generation or addition of H(2)O(2) to PQ(+)* eliminates the 35-line ESR signal of PQ(+)* and subsequently generates the 8-line ESR signal of the DEPMPO-OH adduct. The elimination of PQ(+)* as well as the formation of OH-DEPMPO adduct was not influenced by 1.0 mM deferoxamine, indicating that iron or other transition metals are, at least under anoxic conditions, not necessarily involved in the generation of the most aggressive reactive oxygen species *OH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.