Nonlinear dynamical systems are ubiquitous in natural and engineering sciences, such as fluid mechanics, theoretical chemistry, ship dynamics, rigid body dynamics, atomic physics, solid mechanics, condensed matter physics, mathematical biology, oceanography, meteorology, and celestial mechanics (Wiggins, 1994 and references therein). There have been many advances in understanding phenomena across these disciplines using the geometric viewpoint of the solutions and the underlying structures in the phase space, for example MacKay et al. (1984),
Antibodies are key proteins of the adaptive immune system, and there exists a large body of academic literature and patents dedicated to their study and concomitant conversion into therapeutics, diagnostics, or reagents. These documents often contain extensive functional characterisations of the sets of antibodies the describe. However, leveraging these heterogeneous reports, for example to offer insights into the properties of query antibodies of interest, is currently challenging as there is no central repository through which this wide corpus can be mined by sequence or structure. Here, we present PLAbDab (the Patent and Literature Antibody Database), a self-updating repository containing over 150,000 paired antibody sequences and 3D structural models, of which over 65,000 are unique. Each entry in the database also contains the title and authors of its literature source. Here we describe the methods used to extract, filter, pair, and model the antibodies in PLAbDab, and showcase how PLAbDab can be searched by sequence, structure, or keyword. PLAbDab uses include annotating query antibodies with potential antigen information from similar entries, analysing structural models of existing antibodies to identify modifications that could improve their properties, and compiling bespoke datasets of antibody sequences/structures known to bind to a specific antigen. PLAbDab is freely available via Github (https://github.com/oxpig/PLAbDab) and as a searchable webserver (https://opig.stats.ox.ac.uk/webapps/plabdab).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.