We report an efficient and scalable synthesis of azidotrifluoromethane (CF N ) and longer perfluorocarbon-chain analogues (R N ; R =C F , C F , C F ), which enables the direct insertion of CF and perfluoroalkyl groups into triazole ring systems. The azidoperfluoroalkanes show good reactivity with terminal alkynes in copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), giving access to rare and stable N-perfluoroalkyl triazoles. Azidoperfluoroalkanes are thermally stable and the efficiency of their preparation should be attractive for discovery programs.
A new designer drug, a dissociative anesthetic, and a putative N-methyl-D-aspartate receptor antagonist, methoxetamine (MXE) noted by the EU Early Warning System has been already identified as a cause of several fatalities worldwide. The primary objective of this work was to develop a suitable sample preparation method allowing for isolation of MXE and its main metabolites in high yields from rat brain, liver, and lungs. For the purpose of the project, MXE and five metabolites were synthesized in-house, specifically O-desmethyl-normethoxetamine, O-desmethylmethoxetamine, dihydro-O-desmethylmethoxetamine, normethoxetamine, and dihydromethoxetamine. A sample preparation procedure consisted in the homogenization of the tissue applying salting-out-assisted liquid-liquid extraction (SALLE). A subsequent liquid chromatography-mass spectrometry (LC-MS) analysis was based on reversed-phased chromatography hyphenated with a triple quad MS system in a positive electrospray mode. Multiple reaction monitoring (MRM) was used for qualification and quantification of the analytes. The quantification was based on the application of an isotopically labeled internal standard, normethoxetamine-d3. The matrix-matched calibrations were prepared for each type of matrix with regression coefficients 0.9943-1.0000. The calibration curves were linear in the concentration range of 2.5-250 ng g(-1). Limits of quantification (LOQs) were estimated as 2.5 and 5 ng g(-1), respectively. Recovery (80-117%) and matrix effect (94-110%) at 100 ng g(-1) and intra- and inter-day accuracy and precision at low (2.5 ng g(-1)), middle (25 ng g(-1)), and upper (250 ng g(-1)) concentration levels for all the analytes in all three types of tissues were also determined. The developed analytical method was applied to a set of real samples gathered in toxicological trials on rats and MXE, and its metabolites were determined successfully.
Recently, there has been a worldwide substantial increase in the consumption of new psychoactive substances (NPS), compounds that mimic the structure of illicit drugs, such as amphetamines or ecstasy. The producers try to avoid the law by a slight modification of illicit structures, thereby developing dozens of temporarily legal NPS every year. The current trends in the detection and monitoring of such substances demand a fast and reliable analysis. Molecular spectroscopy represents a highly effective tool for the identification of NPS and chiroptical methods can provide further information on their 3D structure, which is the key for the determination of their biological activity. We present the first systematic study of NPS, specifically butylone, combining chiroptical and vibrational spectroscopies with ab initio calculations. According to density functional theory calculations, 6 stable lowest energy conformers of butylone were found and their molecular structure was described. For each conformer, the relative abundance based on the Boltzmann distribution was estimated, their population weighted spectra predicted and compared to the experimental results. Very good agreement between the experimental and the simulated spectra was achieved, which allowed not only the assignment of the absolute configuration, but also a precise description of the molecular structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.