How and why cooperation evolves, particularly among nonrelatives, remains a major paradox for evolutionary biologists and behavioral ecologists. Although much attention has focused on fitness consequences associated with cooperating, relatively little is known about the second component of evolutionary change, the inheritance of cooperation or reciprocity. The genetics of behaviors that can only be expressed in the context of interactions are particularly difficult to describe because the relevant genes reside in multiple social partners. Indirect genetic effects (IGEs) describe the influence of genes carried in social partners on the phenotype of a focal individual and thus provide a novel approach to quantifying the genetics underlying interactions such as reciprocal cooperation. We used inbred lines of guppies and a novel application of IGE theory to describe the dual genetic control of predator inspection and social behavior, both classic models of reciprocity. We identified effects of focal strain, social group strain, and interactions between focal and group strains on variation in focal behavior. We measured ψ, the coefficient of the interaction, which describes the degree to which an individual's phenotype is influenced by the phenotype of its social partners.The genetic identity of social partners substantially influences inspection behavior, measures of threat assessment, and schooling and does so in positively reinforcing manner. We therefore demonstrate strong IGEs for antipredator behavior that represent the genetic variation necessary for the evolution of reciprocity. The inheritance and evolution of social behavior are enigmatic because such behaviors are expressed by individuals, but fundamentally depend upon interactions with others. Genes expressed by social partners may alter the magnitude and form of social
Quantitative genetic studies frequently utilize inbred strains of animals as tools for partitioning the direct and indirect effects of genes from environmental effects in generating an observed phenotype, however, this approach is rarely applied to behavioral studies. Guppies, Poecilia reticulata, perform a set of anti-predator behaviors that may provide an ideal system to study how complex behavioral traits are generated. To assess the utility of ornamental guppies in quantitative genetics studies of behavior, we assayed five morphologically distinct strains of ornamental guppies for response to predator cues and for variation in response among strains. Despite individual variation, all five strains responded to predator cues and differences among strains were found for all assayed behaviors, including measures of boldness and predator avoidance.
Cooperation among non-kin constitutes a conundrum for evolutionary biology. Theory suggests that non-kin cooperation can evolve if individuals differ consistently in their cooperative phenotypes and assort socially by these, such that cooperative individuals interact predominantly with one another. However, our knowledge of the role of cooperative phenotypes in the social structuring of real-world animal populations is minimal. In this study, we investigated cooperative phenotypes and their link to social structure in wild Trinidadian guppies (Poecilia reticulata). We first investigated whether wild guppies are repeatable in their individual levels of cooperativeness (i.e. have cooperative phenotypes) and found evidence for this in seven out of eight populations, a result which was mostly driven by females. We then examined the social network structure of one of these populations where the expected fitness impact of cooperative contexts is relatively high, and found assortment by cooperativeness, but not by genetic relatedness. By contrast, and in accordance with our expectations, we did not find assortment by cooperativeness in a population where the expected fitness impact of cooperative contexts is lower. Our results provide empirical support for current theory and suggest that assortment by cooperativeness is important for the evolution and persistence of non-kin cooperation in real-world populations.
Models of cooperation among nonkin suggest that social assortment is important for the evolution of cooperation. Theory predicts that interacting phenotypes, whereby an individual's behavior depends on the behavior of its social partners, can drive such social assortment. We measured repeated indirect genetic effects (IGEs) during cooperative predator inspection in eight populations of Trinidadian guppies (Poecilia reticulata) that vary in their evolutionary history of predation. Four broad patterns emerged that were dependent on river, predation history, and sex: (i) current partner behavior had the largest effect on focal behavior, with fish from low-predation habitats responding more to their social partners than fish from high-predation habitats; (ii) different focal/partner behavior combinations can generate cooperation; (iii) some high-predation fish exhibited carryover effects across social partners; and (iv) high-predation fish were more risk averse. These results provide the first large-scale comparison of interacting phenotypes during cooperation across wild animal populations, highlighting the potential importance of IGEs in maintaining cooperation. Intriguingly, while focal fish responded strongly to current social partners, carryover effects between social partners suggest generalized reciprocity (in which one helps anyone if helped by someone) may contribute to the evolution of cooperation in some, but not all, populations of guppies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.