Although LINE-1 (long interspersed nucleotide element-1, L1) retrotransposons comprise 17% of the human genome, an exhaustive search of the December 2001 ''freeze'' of the haploid human genome working draft sequence (95% complete) yielded only 90 L1s with intact ORFs. We demonstrate that 38 of 86 (44%) L1s are polymorphic as to their presence in human populations. We cloned 82 (91%) of the 90 L1s and found that 40 of the 82 (49%) are active in a cultured cell retrotransposition assay. From these data, we predict that there are 80 -100 retrotransposition-competent L1s in an average human being. Remarkably, 84% of assayed retrotransposition capability was present in six highly active L1s (hot L1s). By comparison, four of five full-length L1s involved in recent human insertions had retrotransposition activity comparable to the six hot L1s in the human genome working draft sequence. Thus, our data indicate that most L1 retrotransposition in the human population stems from hot L1s, with the remaining elements playing a lesser role in genome plasticity.
We have used a unique polymorphic 3' transduction to show that a human L1, or LINE-1 (long interspersed nucleotide element-1), retrotransposition event most likely occurred in the maternal primary oocyte during meiosis I. We characterized a truncated L1 retrotransposon with a 3' transduction that was inserted, in a Dutch male patient, into the X-linked gene CYBB, thereby causing chronic granulomatous disease. We used the unique flanking sequence to localize the precursor L1 locus, LRE3, to chromosome 2q24.1. In a cell culture assay, the retrotransposition frequency of LRE3 is greater than that for any other element that has been tested to date. The patient's mother had two LRE3 alleles that differed slightly in the 3'-flanking genomic DNA. The patient had a single LRE3 allele that was identical to one of the maternal alleles; however, the patient's insertion matched the maternal LRE3 allele that he did not inherit. Other data indicate that there is only a small chance that the father (unavailable for analysis) carries the precursor LRE3 allele. In addition, paternal origin of the insertion would have required that an LRE3 mRNA transcribed before meiosis II be carried separately from its precursor LRE3 allele in the fertilizing sperm. Since the mother carries a potential precursor allele and the insertion was on the patient's maternal X chromosome, it is highly likely that the insertion originated during maternal meiosis I.
Human L1 elements are non-LTR retrotransposons that comprise ∼17% of the human genome. Their 5Ј-untranslated region (5Ј-UTR) serves as a promoter for L1 transcription. Now we find that transcription initiation sites are not restricted to nucleotide +1 but vary considerably in both downstream and upstream directions. Transcription initiating upstream explains additional nucleotides often seen between the 5Ј-target site duplication and the L1 start site. A higher frequency of G nucleotides observed upstream from the L1 can be explained by reverse transcription of the L1 RNA 5Ј-CAP, which is further supported by extra Gs seen for full-length HERV-W pseudogenes. We assayed 5Ј-UTR promoter activities for several full-length human L1 elements, and found that upstream flanking cellular sequences strongly influence the L1 5Ј-UTR promoter. These sequences either repress or enhance the L1 promoter activity. Therefore, the evolutionary success of a human L1 in producing progeny depends not only on the L1 itself, but also on its genomic integration site. The promoter mechanism of L1 is reminiscent of initiator (Inr) elements that are TATA-less promoters expressing several cellular genes. We suggest that the L1 5Ј-UTR is able to form an Inr element that reaches into upstream flanking sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.