Periostin is predominantly expressed in collagen-rich fibrous connective tissues that are subjected to constant mechanical stresses including: heart valves, tendons, perichondrium, cornea, and the periodontal ligament (PDL). Based on these data we hypothesize that periostin can regulate collagen I fibrillogenesis and thereby affect the biomechanical properties of connective tissues. Immunoprecipitation and immunogold transmission electron microscopy experiments demonstrate that periostin is capable of directly interacting with collagen I. To analyze the potential role of periostin in collagen I fibrillogenesis, gene targeted mice were generated. Transmission electron microscopy and morphometric analyses demonstrated reduced collagen fibril diameters in skin dermis of periostin knockout mice, an indication of aberrant collagen I fibrillogenesis. In addition, differential scanning calorimetry (DSC) demonstrated a lower collagen denaturing temperature in periostin knockout mice, reflecting a reduced level of collagen cross-linking. Functional biomechanical properties of periostin null skin specimens and atrioventricular (AV) valve explant experiments provided direct evidence of the role that periostin plays in regulating the viscoelastic properties of connective tissues. Collectively, these data demonstrate for the first time that periostin can regulate collagen I fibrillogenesis and thereby serves as an important mediator of the biomechanical properties of fibrous connective tissues.
Recent advances in organ printing technology for applications relating to medical interventions and organ replacement are described. Organ printing refers to the placement of various cell types into a soft scaffold fabricated according to a computer-aided design template using a single device. Computer aided scaffold topology design has recently gained attention as a viable option to achieve function and mass transport requirements within tissue engineering scaffolds. An exciting advance pioneered in our laboratory is that of simultaneous printing of cells and biomaterials, which allows precise placement of cells and proteins within 3-D hydrogel structures. This advance raises the possibility of spatially controlling not only the scaffold structure, but also the type of tissue that can be grown within the scaffold and the thickness of the tissue as capillaries and vessels could be constructed within the scaffolds. Here we summarize recent advances in printing cells and materials using the same device.
Understanding the principles of biological self-assembly is indispensable for developing efficient strategies to build living tissues and organs. We exploit the self-organizing capacity of cells and tissues to construct functional living structures of prescribed shape. In our technology, multicellular spheroids (bio-ink particles) are placed into biocompatible environment (bio-paper) by the use of a three-dimensional delivery device (bio-printer). Our approach mimics early morphogenesis and is based on the realization that the genetic control of developmental patterning through self-assembly involves physical mechanisms. Three-dimensional tissue structures are formed through the postprinting fusion of the bio-ink particles, in analogy with early structure-forming processes in the embryo that utilize the apparent liquid-like behavior of tissues composed of motile and adhesive cells. We modeled the process of self-assembly by fusion of bio-ink particles, and employed this novel technology to print extended cellular structures of various shapes. Functionality was tested on cardiac constructs built from embryonic cardiac and endothelial cells. The postprinting self-assembly of bio-ink particles resulted in synchronously beating solid tissue blocks, showing signs of early vascularization, with the endothelial cells organized into vessel-like conduits.
The Differential Adhesion Hypothesis (DAH) posits that differences in adhesion provide the driving force for morphogenetic processes. A manifestation of differential adhesion is tissue liquidity and a measure for it is tissue surface tension. In terms of this property, DAH correctly predicts global developmental tissue patterns. However, it provides little information on how these patterns arise from the movement and shape changes of cells. We provide strong qualitative and quantitative support for tissue liquidity both in true developmental context and in vitro assays. We follow the movement and characteristic shape changes of individual cells in the course of specific tissue rearrangements leading to liquid-like configurations. Finally, we relate the measurable tissue-liquid properties to molecular entities, whose direct determination under realistic three-dimensional culture conditions is not possible. Our findings confirm the usefulness of tissue liquidity and provide the scientific underpinning for a novel tissue engineering technology. Developmental Dynamics 237:2438 -2449, 2008.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.