Histiocytic neoplasms are clonal, hematopoietic disorders characterized by an accumulation of abnormal, monocyte-derived dendritic cells or macrophages in Langerhans Cell (LCH) and non-Langerhans (non-LCH) histiocytoses, respectively. The discovery of BRAFV600E mutations in ~50% of these patients provided the first molecular therapeutisc target in histiocytosis. However, recurrent driving mutations in the majority of BRAFV600E-wildtype, non-LCH patients are unknown, and recurrent cooperating mutations in non-MAP kinase pathways are undefined for the histiocytic neoplasms. Through combined whole exome and transcriptome sequencing, we identified recurrent kinase fusions involving BRAF, ALK, and NTRK1, as well as recurrent, activating MAP2K1 and ARAF mutations in BRAFV600E-wildtype, non-LCH patients. In addition to MAP kinase pathway lesions, recurrently altered genes involving diverse cellular pathways were identified. Treatment of MAP2K1- and ARAF-mutated, non-LCH patients using MEK and RAF inhibitors, respectively, resulted in clinical efficacy demonstrating the importance of detecting and targeting diverse kinase alterations in these disorders.
BackgroundColorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors.ResultsWe performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations.ConclusionsColorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-014-0454-7) contains supplementary material, which is available to authorized users.
BACKGROUND BRAF mutations occur in 5% to 11% of patients with metastatic colorectal cancer (mCRC) and have been associated with poor prognosis. The current study was undertaken to determine the clinicopathologic characteristics, PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) mutation frequency, and outcomes after metastasectomy in patients with BRAF-mutant mCRC. METHODS Data from 1941 consecutive patients with mCRC who underwent KRAS/BRAF mutation testing between 2009 and 2012 at a single institution were identified to identify BRAF-mutant mCRC cases (92 cases). BRAF wild-type mCRC cases from 2011 (423 cases) served as a control group. RESULTS BRAF-mutated mCRC was found to be significantly associated with older age at diagnosis, female sex, right-sided location, poorly differentiated morphology, and mucinous histology compared with wild-type cases. BRAF-mutant cases more frequently progressed from stage III disease (32% vs 17%; P =.003) and among those patients with stage III disease, T4 disease was more common (48% vs 27%; P =.05). PIK3CA was found to be co-mutated in 5% of BRAF-mutant tumors versus 17% of KRAS-mutant tumors (P <.01) and 4% of BRAF/KRAS wild-type cases. Patients with BRAF-mutated mCRC presented more frequently with peritoneal involvement (26% vs 14%; P <0.01) and less frequently with liver-limited metastases (41% vs 63%; P <.01). Patients with BRAF-mutated mCRC were less likely to undergo metastasectomy (41% vs 26% at 2 years from diagnosis of metastatic disease; P <.01) and were found to have lower overall survival (P <.01) after metastasectomy. CONCLUSIONS BRAF-mutant mCRC is associated with worse clinical outcome. Patients with BRAF-mutant tumors more commonly develop peritoneal metastases, less frequently present with disease limited to the liver, and have shorter survival after metastasectomy compared with patients with BRAF wild-type tumors.
Many mutations in cancer are of unknown functional significance. Standard methods use statistically significant recurrence of mutations in tumor samples as an indicator of functional impact. We extend such analyses into the long tail of rare mutations by considering recurrence of mutations in clusters of spatially close residues in protein structures. Analyzing 10,000 tumor exomes, we identify more than 3000 rarely mutated residues in proteins as potentially functional and experimentally validate several in RAC1 and MAP2K1. These potential driver mutations (web resources: 3dhotspots.org and cBioPortal.org) can extend the scope of genomically informed clinical trials and of personalized choice of therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0393-x) contains supplementary material, which is available to authorized users.
Background: Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. Results: We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.