In mammals, circadian control of physiology and behavior is driven by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. We have used gene expression profiling to identify cycling transcripts in the SCN and in the liver. Our analysis revealed approximately 650 cycling transcripts and showed that the majority of these were specific to either the SCN or the liver. Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components. Major processes regulated by the SCN and liver were found to be under circadian regulation. Importantly, rate-limiting steps in these various pathways were key sites of circadian control, highlighting the fundamental role that circadian clocks play in cellular and organismal physiology.
SUMMARY Mutations that cause Intellectual Disability (ID) and Autism Spectrum Disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, while repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.
Circadian rhythms of cell and organismal physiology are controlled by an autoregulatory transcription-translation feedback loop that regulates the expression of rhythmic genes in a tissue-specific manner. Recent studies have suggested that components of the circadian pacemaker, such as the Clock and Per2 gene products, regulate a wide variety of processes, including obesity, sensitization to cocaine, cancer susceptibility, and morbidity to chemotherapeutic agents. To identify a more complete cohort of genes that are transcriptionally regulated by CLOCK and/or circadian rhythms, we used a DNA array interrogating the mouse protein-encoding transcriptome to measure gene expression in liver and skeletal muscle from WT and Clock mutant mice. In WT tissue, we found that a large percentage of expressed genes were transcription factors that were rhythmic in either muscle or liver, but not in both, suggesting that tissue-specific output of the pacemaker is regulated in part by a transcriptional cascade. In comparing tissues from WT and Clock mutant mice, we found that the Clock mutation affects the expression of many genes that are rhythmic in WT tissue, but also profoundly affects many nonrhythmic genes. In both liver and skeletal muscle, a significant number of CLOCKregulated genes were associated with the cell cycle and cell proliferation. To determine whether the observed patterns in cell-cycle gene expression in Clock mutants resulted in functional dysregulation, we compared proliferation rates of fibroblasts derived from WT or Clock mutant embryos and found that the Clock mutation significantly inhibits cell growth and proliferation.cell cycle ͉ circadian rhythms ͉ Clock mutation ͉ gene expression ͉ protein-encoding transcriptome M any organisms have Ϸ24-h rhythms in metabolism, physiology, and behavior that are driven by cell autonomous circadian pacemakers (1). These circadian rhythms allow organisms to coordinate a myriad of physiological processes with the changing environment. In mammals, the circadian pacemaker is composed of interlocked transcription-translation feedback loops: the primary loop is composed of the basic helix-loophelix transcription factors CLOCK and BMAL1, which drive transcription of the Period (Per1, Per2) and Cryptochrome (Cry1, Cry2) genes (1, 2). PER and CRY proteins form the negative limb of the feedback loop by inhibiting their own CLOCK: BMAL1-induced transcription; turnover of PER and CRY allows the cycle to begin anew. The interlocked loop consists of REV-ERB-␣ and ROR␣, which repress and activate the Bmal1 gene, thereby modulating its function (3, 4). Mutation or deletion of Clock (5), Bmal1 (6), Per1/2 genes (7, 8), or Cry1/2 (9, 10) genes results in behavioral arrhythmicity and disruption of the autoregulatory loop, whereas disruption of components of the secondary loop results in short period-length phenotypes (3, 4).The molecular components of the circadian clock are present in the majority of neurons in the suprachiasmatic nucleus (SCN), a bilateral body in the anterior hypot...
Circadian rhythms are approximate 24-h behavioral and physiological cycles that function to prepare an organism for daily environmental changes. The basic clock mechanism is a network of transcriptional-translational feedback loops that drive rhythmic expression of genes over a 24-h period. The objectives of this study were to identify transcripts with a circadian pattern of expression in adult skeletal muscle and to determine the effect of the Clock mutation on gene expression. Expression profiling on muscle samples collected every 4 h for 48 h was performed. Using COSOPT, we identified a total of 215 transcripts as having a circadian pattern of expression. Real-time PCR results verified the circadian expression of the core clock genes, Bmal1, Per2, and Cry2. Annotation revealed cycling genes were involved in a range of biological processes including transcription, lipid metabolism, protein degradation, ion transport, and vesicular trafficking. The tissue specificity of the skeletal muscle circadian transcriptome was highlighted by the presence of known muscle-specific genes such as Myod1, Ucp3, Atrogin1 (Fbxo32), and Myh1 (myosin heavy chain IIX). Expression profiling was also performed on muscle from the Clock mutant mouse and sarcomeric genes such as actin and titin, and many mitochondrial genes were significantly downregulated in the muscle of Clock mutant mice. Defining the circadian transcriptome in adult skeletal muscle and identifying the significant alterations in gene expression that occur in muscle of the Clock mutant mouse provide the basis for understanding the role of circadian rhythms in the daily maintenance of skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.