Protein–metal–organic frameworks (p-MOFs) are a prototypical example of how synthetic biological hybrid systems can be used to develop next-generation materials. Controlling p-MOF formation enables the design of hybrid materials with enhanced biological activity and high stability. However, such control is yet to be fully realized due to an insufficient understanding of the governing nucleation and growth mechanisms in p-MOF systems. The structural evolution of p-MOFs was probed by cryo-transmission electron microscopy, revealing nonclassical pathways via dissolution–recrystallization of highly hydrated amorphous particles and solid-state transformation of a protein-rich amorphous phase. On the basis of these data, we propose a general description of p-MOF crystallization which is best characterized by particle aggregation and colloidal theory for future synthetic strategies.
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Metal−organic frameworks (MOFs) are a class of porous nanomaterials that have been extensively studied as enzyme immobilization substrates. During in situ immobilization, MOF nucleation is driven by biomolecules with low isoelectric points. Investigation of how biomolecules control MOF self-assembly mechanisms on the molecular level is key to designing nanomaterials with desired physical and chemical properties. Here, we demonstrate how molecular modifications of bovine serum albumin (BSA) with fluorescein isothiocyanate (FITC) can affect MOF crystal size, morphology, and encapsulation efficiency. Final crystal properties are characterized using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), fluorescent microscopy, and fluorescence spectroscopy. To probe MOF self-assembly, in situ experiments were performed using cryogenic transmission electron microscopy (cryo-TEM) and X-ray diffraction (XRD). Biophysical characterization of BSA and FITC-BSA was performed using ζ potential, mass spectrometry, circular dichroism studies, fluorescence spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The combined data reveal that protein folding and stability within amorphous precursors are contributing factors in the rate, extent, and mechanism of crystallization. Thus, our results suggest molecular modifications as promising methods for fine-tuning protein@ MOFs' nucleation and growth.
The Droserasins, aspartic proteases from the carnivorous plant Drosera capensis, contain a 100-residue plant-specific insert (PSI) that is post-translationally cleaved and independently acts as an antimicrobial peptide. PSIs are of interest not only for their inhibition of microbial growth, but also because they modify the size of lipid vesicles and strongly interact with biological membranes. PSIs may therefore be useful for modulating lipid systems in NMR studies of membrane proteins. Here we present the expression and biophysical characterization of the Droserasin 1 PSI (D1 PSI.) This peptide is monomeric in solution and maintains its primarily α -helical secondary structure over a wide range of temperatures and pH values, even under conditions where its three disulfide bonds are reduced. Vesicle fusion assays indicate that the D1 PSI strongly interacts with bacterial and fungal lipids at pH 5 and lower, consistent with the physiological pH of D. capensis mucilage. It binds lipids with a variety of head groups, highlighting its versatility as a potential stabilizer for lipid nanodiscs. Solid-state NMR spectra collected at a field strength of 36 T, using a unique series-connected hybrid magnet, indicate that the peptide is folded and strongly bound to the membrane. Molecular dynamics simulations indicate that the peptide is stable as either a monomer or a dimer in a lipid bilayer. Both the monomer and the dimer allow the passage of water through the membrane, albeit at different rates.
Biomass burning organic aerosol (BBOA) is one of the largest sources of organics in the atmosphere. Mineral dust and biomass burning smoke frequently co-exist in the same atmospheric environment. Common...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.