The Hippo pathway component WW domain-containing transcription regulator 1 (TAZ) is a transcriptional coactivator and an oncogene in breast and lung cancer. Transcriptional targets of TAZ that modulate immune cell function in the tumor microenvironment are poorly understood. Here, we perform a comprehensive screen for immune-related genes regulated by TAZ and its paralog YAP using NanoString gene expression profiling. We identify the immune checkpoint molecule as a target of Hippo signaling. The upstream kinases of the Hippo pathway, mammalian STE20-like kinase 1 and 2 (MST1/2), and large tumor suppressor 1 and 2 (LATS1/2), suppress PD-L1 expression while TAZ and YAP enhance PD-L1 levels in breast and lung cancer cell lines. PD-L1 expression in cancer cell lines is determined by TAZ activity and TAZ/YAP/TEAD increase promoter activity. Critically, TAZ-induced PD-L1 upregulation in human cancer cells is sufficient to inhibit T-cell function. The relationship between TAZ and PD-L1 is not conserved in multiple mouse cell lines, likely due to differences between the human and mouse promoters. To explore the extent of divergence in TAZ immune-related targets between human and mouse cells, we performed a second NanoString screen using mouse cell lines. We show that many targets of TAZ may be differentially regulated between these species. These findings highlight the role of Hippo signaling in modifying human/murine physiologic/pathologic immune responses and provide evidence implicating TAZ in human cancer immune evasion. Human-specific activation of PD-L1 by a novel Hippo signaling pathway in cancer immune evasion may have a significant impact on research in immunotherapy. .
Tet methylcytosine dioxygenase 2 (TET2) is one of the earliest and most frequently mutated genes in clonal hematopoiesis of indeterminate potential (CHIP) and myeloid cancers, including myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). TET2 catalyzes the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, leading to DNA demethylation, and also affects transcription by recruiting histone modifiers. Inactivating TET2 mutations cause epigenetic dysregulation, clonal hematopoietic stem cell (HSC) dominance, and monocytic lineage skewing. Here, we found that Tet2 was the most highly expressed Tet enzyme in murine macrophage (MΦ) differentiation. Tet2 transcription was further induced by lipopolysaccharide (LPS), but not interleukin (IL)-4, stimulation, potentially in a nuclear factor κβ-dependent manner. Tet2 loss did not affect early LPS gene responses in vitro, but increased Il-1b, Il-6, and Arginase 1 (Arg1) mRNA expression at later stages of stimulation in bone-marrow-derived MΦs (BMMΦs). Tet2-deficient peritoneal MΦs, however, demonstrated profound, constitutive expression of LPS-induced genes associated with an inflammatory state in vivo. In contrast, Tet2 deficiency did not affect alternative MΦ gene expression significantly in response to IL-4. These results suggested impaired resolution of inflammation in the absence of Tet2 both in vitro and in vivo. For the first time, we also detected TET2 mutations in BMMΦs from MDS and CMML patients and assayed their effects on LPS responses, including their potential influence on human IL-6 expression. Our results show that Tet2 restrains inflammation in murine MΦs and mice, raising the possibility that loss of TET2 function in MΦs may alter the immune environment in the large elderly population with TET2-mutant CHIP and in TET2-mutant myeloid cancer patients.
Background: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy. Hereditary cases are associated with germline mutations in BMPR2 and 16 other genes. However, these mutations occur in under 25% of idiopathic PAH patients (IPAH) and are rare in PAH associated with connective tissue diseases (APAH). Preclinical studies suggest epigenetic dysregulation, including altered DNA methylation, promotes PAH. Somatic mutations of Tet-methylcytosine-dioxygenase-2 (TET2), a key enzyme in DNA demethylation, occur in cardiovascular disease and are associated with clonal hematopoiesis, inflammation and adverse vascular remodeling. The role of TET2 in PAH is unknown. Methods: To test for a role of TET2, we utilized a cohort of 2572 cases from the PAH Biobank. Within this cohort, gene-specific rare variant association tests were performed using 1832 unrelated European PAH patients and 7509 non-Finnish European gnomAD subjects as controls. In an independent cohort of 140 patients, we quantified TET2 expression in peripheral blood mononuclear cells. To assess causality, we investigated hemodynamic and histologic evidence of PAH in hematopoietic Tet2-knockout mice. Results: We observed an increased burden of rare, predicted deleterious, germline variants in TET2 in PAH patients of European ancestry (9/1832) compared to controls (6/7509; relative risk=6, p=0.00067). Assessing the whole cohort, 0.39% (10/2572) of patients had 12 TET2 mutations (75% predicted germline and 25% somatic). These patients had no mutations in other PAH-related genes. Patients with TET2 mutations were older (71±7 years versus 48±19 years, p<0.0001) unresponsive to vasodilator challenge (0/7 vs 140/1055 (13.2%)), had lower PVR (5.2±3.1 versus 10.5±7.0 Woods units, p=0.02) and had increased inflammation (including elevation of IL-1β). Circulating TET2 expression did not correlate with age and was decreased in >86% of PAH patients. Tet2-knockout mice spontaneously developed PAH, adverse pulmonary vascular remodeling and inflammation, with elevated levels of cytokines, including IL-1β. Chronic therapy with an antibody targeting IL-1β blockade regressed PAH. Conclusions: PAH is the first human disease related to potential TET2 germline mutations. Inherited and acquired abnormalities of TET2 occur in 0.39% of PAH cases. Decreased TET2 expression is ubiquitous and has potential as a PAH biomarker.
Key Points CH may be associated with broader ill health (worse performance status, increased and potentially novel comorbidities). Serum interleukin-6 is elevated in people with CH and genetic subtypes, providing a view of the human systemic inflammatory landscape of CH.
Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in lung cancer and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Further RNA-seq and qRT-PCR analysis identified Aldh1a1, a well-established CSC marker, as critical TAZ downstream target and showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEAD. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.