This study provides comprehensive proteomic profiles from the venom producing posterior salivary glands of octopus (superorder Octopodiformes) species. A combined transcriptomic and proteomic approach was used to identify 1703 proteins from the posterior salivary gland of the southern blue-ringed octopus, Hapalochlaena maculosa and 1300 proteins from the posterior salivary gland of the southern sand octopus, Octopus kaurna. The two proteomes were broadly similar; clustering of proteins into orthogroups revealed 937 that were shared between species. Serine proteases were particularly diverse and abundant in both species. Other abundant proteins included a large number of secreted proteins, many of which had no known conserved domains, or homology to proteins with known function. On the basis of homology to known venom proteins, 23 putative toxins were identified in H. maculosa and 24 in O. kaurna. These toxins span nine protein families: CAP (cysteine rich secretory proteins, antigen 5, parthenogenesis related), chitinase, carboxylesterase, DNase, hyaluronidase, metalloprotease, phospholipase, serine protease and tachykinin. Serine proteases were responsible for 70.9% and 86.3% of putative toxin expression in H. maculosa and O. kaurna, respectively, as determined using intensity based absolute quantification (iBAQ) measurements. Phylogenetic analysis of the putative toxin serine proteases revealed a similar suite of diverse proteins present in both species. Posterior salivary gland composition of H. maculosa and O. kaurna differ in several key aspects. While O. kaurna expressed the proteinaceous neurotoxin, tachykinin, this was absent from H. maculosa, perhaps reflecting the acquisition of a potent nonproteinaceous neurotoxin, tetrodotoxin (TTX) produced by bacteria in the salivary glands of that species. The dispersal factor, hyaluronidase was particularly abundant in H. maculosa. Chitinase was abundant in both species and is believed to facilitate envenomation in chitinous prey such as crustaceans. Cephalopods represent a largely unexplored source of novel proteins distinct from all other venomous taxa and are of interest for further inquiry, as novel proteinaceous toxins derived from venoms may contribute to pharmaceutical design.
Background Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. Findings To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non–tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. Conclusions We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.