Motivated by contemporary security challenges, we reeval uate and refine capability-based addressing for the RISC era. We present CHERI, a hybrid capability model that extends the 64-bit MIPS ISA with byte-granularity memory protection. We demonstrate that CHERI enables language memory model enforcement and fault isolation in hardware rather than soft ware, and that the CHERI mechanisms are easily adopted by existing programs for efficient in-program memory safety.In contrast to past capability models, CHERI complements, rather than replaces, the ubiquitous page-based protection mechanism, providing a migration path towards deconflat ing data-structure protection and OS memory management. Furthermore. CHERI adheres to a strict RISC philosophy: it maintains a load-store architecture and requires only single cycle instructions, and supplies protection primitives to the compiler, language runtime, and operating system.We demonstrate a mature FPGA implementation that runs the FreeBSD operating system with a full range of software and an open-source application suite compiled with an ex tended LLVM to use CHERI memory protection. A limit study compares published memory safety mechanisms in terms of instruction count and memory overheads. The study illustrates that CHERI is peiformance-competitive even while providing assurance and greater flexibility with simpler hardware.
CHERI extends a conventional RISC Instruction-Set Architecture, compiler, and operating system to support fine-grained, capability-based memory protection to mitigate memory-related vulnerabilities in C-language TCBs. We describe how CHERI capabilities can also underpin a hardware-software object-capability model for application compartmentalization that can mitigate broader classes of attack. Prototyped as an extension to the open-source 64-bit BERI RISC FPGA softcore processor, FreeBSD operating system, and LLVM compiler, we demonstrate multiple orders-of-magnitude improvement in scalability, simplified programmability, and resulting tangible security benefits as compared to compartmentalization based on pure Memory-Management Unit (MMU) designs. We evaluate incrementally deployable CHERI-based compartmentalization using several real-world UNIX libraries and applications.
Application compartmentalization, a vulnerability mitigation technique employed in programs such as OpenSSH and the Chromium web browser, decomposes software into isolated components to limit privileges leaked or otherwise available to attackers. However, compartmentalizing applications -and maintaining that compartmentalization -is hindered by ad hoc methodologies and significantly increased programming effort. In practice, programmers stumble through (rather than overtly reason about) compartmentalization spaces of possible decompositions, unknowingly trading off correctness, security, complexity, and performance. We present a new conceptual framework embodied in an LLVM-based tool: the Security-Oriented Analysis of Application Programs (SOAAP) that allows programmers to reason about compartmentalization using source-code annotations (compartmentalization hypotheses). We demonstrate considerable benefit when creating new compartmentalizations for complex applications, and analyze existing compartmentalized applications to discover design faults and maintenance issues arising from application evolution.
The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot be treated as either purely abstract or purely concrete entities: the language exposes their representations, but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs with de facto standard usage Ð which itself is difficult to investigate.In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C and in C as it is used and implemented in practice, focussing especially on pointer provenance. We aim to, as far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and not; both address many design questions. We highlight some pros and cons and open questions, and illustrate the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it with the Cerberus semantics for much of the rest of C, which we have made substantially more complete and robust, and equipped with a web-interface GUI. This allows us to experimentally assess our proposals on those test cases. To assess their viability with respect to larger bodies of C code, we analyse the changes required and the resulting behaviour for a port of FreeBSD to CHERI, a research architecture supporting hardware capabilities, which (roughly speaking) traps on the memory safety violations which our proposals deem undefined behaviour. We also develop a new runtime instrumentation tool to detect possible provenance violations in normal C code, and apply it to some of the SPEC benchmarks. We compare our proposal with a source-language variant of the twin-allocation LLVM semantics proposal of Lee et al. Finally, we describe ongoing interactions with WG14, exploring how our proposals could be incorporated into the ISO standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.