Xylan, cellulose and lignin are the three major components of secondary walls in wood, and elucidation of the biosynthetic pathway of xylan is of importance for potential modification of secondary wall composition to produce wood with improved properties. So far, three Arabidopsis glycosyltransferases, FRAGILE FIBER8, IRREGULAR XYLEM8 and IRREGULAR XYLEM9, have been implicated in glucuronoxylan (GX) biosynthesis. In this study, we demonstrate that PARVUS, which is a member of family GT8, is required for the biosynthesis of the tetrasaccharide primer sequence, beta-D-Xyl-(1 --> 3)-alpha-l-Rha-(1 --> 2)-alpha-D-GalA-(1 --> 4)-D-Xyl, located at the reducing end of GX. The PARVUS gene is expressed during secondary wall biosynthesis in fibers and vessels, and its encoded protein is predominantly localized in the endoplasmic reticulum. Mutation of the PARVUS gene leads to a drastic reduction in secondary wall thickening and GX content. Structural analysis of GX using (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the parvus mutation causes a loss of the tetrasaccharide primer sequence at the reducing end of GX and an absence of glucuronic acid side chains in GX. Activity assay showed that the xylan xylosyltransferase and glucuronyltransferase activities were not affected in the parvus mutant. Together, these findings implicate a possible role for PARVUS in the initiation of biosynthesis of the GX tetrasaccharide primer sequence and provide novel insights into the mechanisms of GX biosynthesis.
Dicot wood is mainly composed of cellulose, lignin and glucuronoxylan (GX). Although the biosynthetic genes for cellulose and lignin have been studied intensively, little is known about the genes involved in the biosynthesis of GX during wood formation. Here, we report the molecular characterization of two genes, PoGT8D and PoGT43B, which encode putative glycosyltransferases, in the hybrid poplar Populus alba x tremula. The predicted amino acid sequences of PoGT8D and PoGT43B exhibit 89 and 75% similarity to the Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9, respectively, both of which have been shown to be required for GX biosynthesis. The PoGT8D and PoGT43B genes were found to be expressed in cells undergoing secondary wall thickening, including the primary xylem, secondary xylem and phloem fibers in stems, and the secondary xylem in roots. Both PoGT8D and PoGT43B are predicted to be type II membrane proteins and shown to be targeted to Golgi. Overexpression of PoGT43B in the irx9 mutant was able to rescue the defects in plant size and secondary wall thickness and partially restore the xylose content. Taken together, our results demonstrate that PoGT8D and PoGT43B are Golgi-localized, secondary wall-associated proteins, and PoGT43B is a functional ortholog of IRX9 involved in GX biosynthesis during wood formation.
The implementation of an integrated medical neuroscience course by technologically pivoting an in-person neuroscience course to online using an adaptive blended method may provide a unique approach for teaching a medical neuroscience course during the Covid-19 pandemic. An adaptive blended learning method was developed in response to the requirements necessitated by the Covid-19 pandemic. This model combined pedagogical needs with digital technology using online learning activities to implement student learning in a medical neuroscience course for year one medical students. This approach provided medical students with an individually customized learning opportunity in medical neuroscience. The students had the complete choice to engage the learning system synchronously or asynchronously and learn neuroscience materials at different locations and times in response to the demands required to deal with the pandemic. Students' performance in summative and formative examinations of the adaptive blended learning activities were compared with the previous performance obtained the previous year when the contents of the medical neuroscience course were implemented using the conventional "face-to-face" learning approach. While the cohort of our students in 2019 and 2020 changed, the contents, sessions, volume of material and assessment were constant. This enabled us to compare the results of the 2019 and 2020 classes. Overall, students' performance was not significantly different between the adaptive blended learning and the in-person approach. More students scored between 70-79% during the adaptive blended learning compared with in-class teaching, while more students scored between 80-89% during the in-person learning than during the adaptive blended learning. Finally, the percentage of students that scored >90% was not significantly different for both Years 2019 and 2020. The adaptive blended learning approach was effective in enhancing academic performance for high performing medical students. It also permitted the early identification of underachieving students, thereby serving as an early warning sign to permit timely intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.