Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis.
SignificanceWe have experimentally investigated the immunoregulatory effects of human gut microbiota in multiple sclerosis (MS). We have identified specific bacteria that are associated with MS and demonstrated that these bacteria regulate T lymphocyte-mediated adaptive immune responses and contribute to the proinflammatory environment in vitro and in vivo. Thus, our results expand the knowledge of the microbial regulation of immunity and may provide a basis for the development of microbiome-based therapeutics in autoimmune diseases.
Eight patients with worsening neuromyelitis optica were treated with rituximab to achieve B cell depletion. Treatment was well tolerated. Six of eight patients were relapse free and median attack rate declined from 2.6 attacks/patient/year to 0 attacks/patient/year (p = 0.0078). Seven of eight patients experienced substantial recovery of neurologic function over 1 year of average follow-up. The pretreatment median Expanded Disability Status Scale score was 7.5, and at follow-up examination was 5.5 (p = 0.013).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.