A tissue-mimicking material (TMM) for the acoustic and thermal characterization of high-intensity focused ultrasound (HIFU) devices has been developed. The material is a high-temperature hydrogel matrix (gellan gum) combined with different sizes of aluminum oxide particles and other chemicals. The ultrasonic properties (attenuation coefficient, speed of sound, acoustical impedance, and the thermal conductivity and diffusivity) were characterized as a function of temperature from 20 to 70°C. The backscatter coefficient and nonlinearity parameter B/A were measured at room temperature. Importantly, the attenuation coefficient has essentially linear frequency dependence, as is the case for most mammalian tissues at 37°C. The mean value is 0.64f(0.95) dB·cm(-1) at 20°C, based on measurements from 2 to 8 MHz. Most of the other relevant physical parameters are also close to the reported values, although backscatter signals are low compared with typical human soft tissues. Repeatable and consistent temperature elevations of 40°C were produced under 20-s HIFU exposures in the TMM. This TMM is appropriate for developing standardized dosimetry techniques, validating numerical models, and determining the safety and efficacy of HIFU devices.
This review evaluates the thermal mechanism for ultrasound-induced biological effects in postnatal subjects. The focus is the evaluation of damage versus temperature increase. A view of ultrasound-induced temperature increase is presented, based on thermodynamic Arrhenius analyses. The hyperthermia and other literature revealed data that allowed for an estimate of a temperature increase threshold of tissue damage for very short exposure times. This evaluation yielded an exposure time extension of the 1997 American Institute of Ultrasound in Medicine Conclusions Regarding Heat statement (American Institute of Ultrasound in Medicine, Laurel, MD) to 0.1 second for nonfetal tissue, where, at this exposure time, the temperature increase threshold of tissue damage was estimated to be about 18 degrees C. The output display standard was also evaluated for soft tissue and bone cases, and it was concluded that the current thermal indices could be improved to reduce the deviations and scatter of computed maximum temperature rises.
To address the challenges associated with measuring the ultrasonic power from high-intensity focused ultrasound transducers via radiation force, a technique based on pulsed measurements was developed and analyzed. Two focused ultrasound transducers were characterized in terms of an effective duty factor, which was then used to calculate the power during the pulse at high applied power levels. Two absorbing target designs were used, and both gave comparable results and displayed no damage and minimal temperature rise if placed near the transducer and away from the focus. The method yielded reproducible results up to the maximum pulse power generated of approximately 230 W, thus allowing the radiated power to be calibrated in terms of the peak-to-peak voltage applied to the transducer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.