Radio frequency (RF) blackout and attenuation have been observed during atmospheric reentry since the advent of space exploration. The effects range from severe attenuation to complete loss of communications and can last from 90 s to 10 min depending on the vehicle’s trajectory. This paper examines a way of using a metasurface to improve the performance of communications during reentry. The technique is viable at low plasma densities and matches a split-ring resonator (SRR)-based mu-negative (MNG) sheet to the epsilon-negative (ENG) plasma region. Considering the MNG metasurface as a window to the exterior of a reentry vehicle, its matched design yields high transmission of an electromagnetic plane wave through the resulting MNG-ENG metastructure into the region beyond it. A varactor-based SRR design facilitates tuning the MNG layer to ENG layers with different plasma densities. Both simple and Huygens dipole antennas beneath a matched metastructure are then employed to demonstrate the consequent realization of significant signal transmission through it into free space beyond the exterior ENG plasma layer.
Radio frequency blackout is a well-known phenomenon that happens when a plasma forms around a plasmasonic vehicle traveling through an atmosphere. This paper examines an electromagnetic metamaterial-based approach to mitigate the communication losses through the blackout plasma. A paired epsilon- and mu-negative layered meta-structure is developed that is matched to the epsilon-negative plasma, creating a low-loss passband window through it. Its ideal performance is first characterized analytically. Metamaterial inclusions are then developed to attain the required single-negative layers. Numerical simulations of the resulting realizable meta-structure verify its efficacy, confirming the analytical results and the viability of using it to achieve reasonable signal strengths through representative plasma thicknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.