Objectives: To (a) compare ultrasound (US; including grey scale and colour and power Doppler) and magnetic resonance imaging (MRI; with high resolution and fat saturation sequences) with a clinical yardstick in the evaluation of chronic Achilles tendinopathy, and (b) examine whether either imaging method predicted 12 and 24 month clinical outcome. Methods: Forty five patients with symptoms in 57 Achilles tendons were diagnosed with tendinopathy by an experienced sports medicine doctor. All patients underwent US examination (12 MHz probe) with colour and power Doppler, and 25 consecutive patients also underwent MRI with high resolution T1 weighted and STIR sequences. Results: US identified abnormal morphology in 37 of the 57 symptomatic tendons (65%) and normal morphology in 19 of 28 asymptomatic tendons (68%). Baseline US findings did not predict 12 month clinical outcome. The addition of colour and power Doppler did not improve the diagnostic performance of US. MRI identified abnormal morphology in 19 of 34 symptomatic tendons (56%) and normal morphology in 15 of 16 asymptomatic tendons (94%). Lesser grades of MR signal abnormality at baseline were associated with better clinical status at 12 month follow up. Conclusions: US and MRI show only moderate correlation with clinical assessment of chronic Achilles tendinopathy. Graded MRI appearance was associated with clinical outcome but US was not. B oth ultrasound (US) and magnetic resonance imaging (MRI) can provide excellent morphological information in patients with overuse injury of the Achilles tendon.
We used event-related functional magnetic resonance imaging (erfMRI) techniques to examine the cerebral sites involved with target detection and novelty processing of auditory stimuli. Consistent with the results from a recent erfMRI study in the visual modality, target processing was associated with activation bilaterally in the anterior superior temporal gyrus, inferior and middle frontal gyrus, inferior and superior parietal lobules, anterior and posterior cingulate, thalamus, caudate, and the amygdala/hippocampal complex. Analyses of the novel stimuli revealed activation bilaterally in the inferior frontal gyrus, insula, inferior parietal lobule, and in the inferior, middle, and superior temporal gyri. These data suggest that the scalp recorded event-related potentials (e.g., N2 and P3) elicited during similar tasks reflect an ensemble of neural generators located in spatially remote cortical areas.
We used event-related functional magnetic resonance imaging (erfMRI) techniques to examine the cerebral sites involved with target detection and novelty processing of auditory stimuli. Consistent with the results from a recent erfMRI study in the visual modality, target processing was associated with activation bilaterally in the anterior superior temporal gyrus, inferior and middle frontal gyrus, inferior and superior parietal lobules, anterior and posterior cingulate, thalamus, caudate, and the amygdala/hippocampal complex. Analyses of the novel stimuli revealed activation bilaterally in the inferior frontal gyrus, insula, inferior parietal lobule, and in the inferior, middle, and superior temporal gyri. These data suggest that the scalp recorded event-related potentials (e.g., N2 and P3) elicited during similar tasks reflect an ensemble of neural generators located in spatially remote cortical areas.
Whole brain event-related functional magnetic resonance imaging (fMRI) techniques were employed to elucidate the cerebral sites involved in processing rare target and novel visual stimuli during an oddball discrimination task. The analyses of the hemodynamic response to the visual target stimuli revealed a distributed network of neural sources in anterior and posterior cingulate, inferior and middle frontal gyrus, bilateral parietal lobules, anterior superior temporal gyrus, amygdala, and thalamus. The analyses of the hemodynamic response for the visual novel stimuli revealed an extensive network of neural activations in occipital lobes and posterior temporal lobes, bilateral parietal lobules, and lateral frontal cortex. The hemodynamic response associated with processing target and novel stimuli in the visual modality were also compared with data from an analogous study in the auditory modality ( Kiehl et al., 2001 ). Similar patterns of activation were observed for target and novel stimuli in both modalities, but there were some significant differences. The results support the hypothesis that target detection and novelty processing are associated with neural activation in widespread neural areas, suggesting that the brain seems to adopt a strategy of activating many potentially useful brain regions despite the low probability that these brain regions are necessary for task performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.