Fatty acid reesterification in adipose tissue is dependent on the generation of glycerol 3-phosphate, and, at least in rodent adipose tissue, this appears to occur primarily through glyceroneogenesis. A key enzyme in this process is pyruvate dehydrogenase kinase 4 (PDK4). PDK4 is induced in white adipose tissue by thiazolidinediones (TZDs) and the inhibition or knockdown of PDK4 inhibits TZD-induced increases in glyceroneogenesis. Since TZDs have many unwanted side effects, we were interested in identifying alternative mechanisms that could regulate PDK4 mRNA expression in white adipose tissue. In this regard we hypothesized that exercise, fasting, and epinephrine would increase PDK4 mRNA levels in rat epididymal adipose tissue. We further postulated that the p38 mitogen-activated protein kinase (MAPK) and 5'-AMP-activated protein kinase (AMPK) signaling pathways would control PDK4 mRNA expression in cultured adipose tissue. Exercise, fasting, and in or ex vivo epinephrine treatment increased PDK4 mRNA levels. These perturbations did not increase the expression of PDK1, -2, or -3. Pyruvate dehydrogenase phosphorylation was increased after an overnight fast and 4 h after the cessation of exercise. In cultured adipose tissue, epinephrine increased p38 and AMPK signaling; however, the direct activation of AMPK by AICAR or metformin led to reductions in PDK4 mRNA levels. The p38 inhibitor SB202190 reduced epinephrine-mediated increases in p38 MAPK activation without altering hormone-sensitive lipase or AMPK phosphorylation or attenuating epinephrine-induced increases in lipolysis. Reductions in p38 MAPK signaling were associated with decreases in PDK4 mRNA expression. The inhibition of peroxisome proliferator-activated receptor-γ (PPARγ) also attenuated the induction of PDK4. Our results are the very first to demonstrate an epinephrine-mediated regulation of PDK4 mRNA levels in white adipose tissue and suggest that p38 MAPK and PPARγ could be involved in this pathway.
Precise, noninvasive analysis and quantification of in vivo body composition is essential for research involving longitudinal, small-animal disease models. We investigated the feasibility and precision of a rapid, flat-panel μCT scanner to report whole body adipose tissue volume (ATV), lean tissue volume (LTV), skeletal tissue volume (STV), and bone mineral content (BMC) in 25 postmortem female and 52 live male Sprague-Dawley rats. μCT images, acquired in three 90-mm segments and reconstructed with 308 μm of isotropic voxel spacing, formed contiguous image volumes of each entire rat specimen. Three signal-intensity thresholds (determined to be -186, 5, and 155 HU) were used to classify each voxel as adipose, lean, or skeletal tissue, respectively. Tissue masses from the volume fractions of ATV, LTV, and STV were calculated from assumed tissue densities of 0.95, 1.05, and 1.92 g/cm(-3), respectively. A CT-derived total mass was calculated for each rat and compared with the gravimetrically measured mass, which differed on average for the postmortem female and the live male group by 2.5 and 1.1%, respectively. To evaluate the accuracy of the CT-derived body composition technique, following the live male study excised muscle tissue in the lower right leg of all rats in group B were compared with the image-derived LT measurement of the same regional compartment and found to differ on average by 2.2%. Through repeated CT measurements of postmortem specimens, the whole body ATV, LTV, STV, and BMC measurement analysis gave a precision value of ±0.6, 1.9, 1.7, and 0.5% of the average value, respectively.
Adipose tissue is recognized as a key player in the regulation of whole body metabolism. Apelin, is a recently identified adipokine that when given to mice results in increases in skeletal muscle uncoupling protein 3 (UCP3) content. Similarly, acute apelin treatment has been shown to increase the activity of 5'-AMP-activated protein kinase (AMPK), a reputed mediator of skeletal muscle mitochondrial biogenesis. Given these findings, we sought to determine the effects of apelin on skeletal muscle mitochondrial content. Male Wistar rats were given daily intraperitoneal injections of apelin-13 (100 nmol/kg) for 2 wk. We made the novel observation that the activities of citrate synthase, cytochrome c oxidase, and beta-hydroxyacyl coA dehydrogenase (betaHAD) were increased in triceps but not heart and soleus muscles from apelin-treated rats. When confirming these results we found that both nuclear and mitochondrial-encoded subunits of the respiratory chain were increased in triceps from apelin-treated rats. Similarly, apelin treatment increased the protein content of components of the mitochondrial import and assembly pathway. The increases in mitochondrial marker proteins were associated with increases in proliferator-activated receptor-gamma coactivator-1 (PGC-1beta) but not PGC-1alpha or Pgc-1-related co-activator (PRC) mRNA expression. Chronic and acute apelin treatment did not increase the protein content and/or phosphorylation status of AMPK and its downstream substrate acetyl-CoA carboxylase. These findings are the first to demonstrate that apelin treatment can induce skeletal muscle mitochondrial content. Given the lack of an effect of apelin on AMPK signaling and PGC-1alpha mRNA expression, these results suggest that apelin increases skeletal muscle mitochondrial content through a mechanism that is distinct from that of more robust physiological stressors.
NF-κB is a transcription factor implicated in pathological responses that develop during diabetes mellitus, including skeletal muscle atrophy. Given that NF-κB activation, protein composition, and content within diabetic skeletal muscle remain generally uncharacterized, a streptozotocin (STZ) model was used to assess NF-κB activation, composition, and content. Sprague-Dawley rats were injected with STZ (55 mg/kg) and after 30 days the soleus (SOL), plantaris (PL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles were assessed by electrophoresis mobility shift assay and western blotting. NF-κB activation was detected in all muscles examined, but was reduced in RG muscles from diabetic animals. Supershifts indicated NF-κB was composed primarily of p50 in diabetic and control animals. The content of both p65 and p52 was elevated in SOL and PL muscles, while p52 was decreased in RG. The coactivating protein, Bcl-3, was increased in WG and RG, but decreased in PL. Both p50 and RelB remained unchanged in all tissues examined. All muscles from diabetic animals demonstrated reduced mass when compared to controls, but only the gastrocnemius demonstrated atrophy as reflected by a reduced muscle-to-body mass ratio. In conclusion, diabetic alterations to the contents and activation of the NF-κB protein were tissue-specific, but did not appear to alter dimer composition of constitutively bound NF-κB. These results indicate that diabetes may alter NF-κB activity and expression in a musclespecific manner.
Frier BC, Jacobs RL, Wright DC. Interactions between the consumption of a high-fat diet and fasting in the regulation of fatty acid oxidation enzyme gene expression: an evaluation of potential mechanisms. Am J Physiol Regul Integr Comp Physiol 300: R212-R221, 2011. First published November 17, 2010 doi:10.1152/ajpregu.00367.2010The consumption of high-fat diets (HFDs) and fasting are known to increase the expression of enzymes involved in fatty acid oxidation (FAO). However, it has been reported that the ability of physiological stressors to induce enzymes of FAO in skeletal muscle is blunted with obesity. In this regard, we sought to explore the effects and potential mechanisms of an HFD on the expression of FAO enzymes in the fed and fasted state. The consumption of an HFD increased the mRNA expression or protein content of medium-chain acyl-CoA dehydrogenase (MCAD), uncoupling protein-3 (UCP3), and pyruvate dehydrogenase kinase 4 (PDK4) in the fed state. Fasting increased the mRNA expression of PDK4, MCAD, and UCP-3, and the protein content of UCP-3 in chow but not HFD rats. HFDs did not increase carnitine palmitoyl transfer-1 (CPT-1) mRNA levels in the fed state and the effects of fasting were markedly reduced compared with chow-fed rats. The expression of peroxisome-proliferator-activated receptor-␥ coactivator-1 (PGC-1) was increased in muscle from HFD rats in the fed state, while PGC-1-related coactivator (PRC) was increased with fasting in chow-fed but not HFD rats. Plasma fatty acid levels were elevated in the fed state from HFD rats but not increased further with fasting, whereas fasting increased plasma fatty acids in chow-fed animals. Fasting-mediated increases in plasma epinephrine, and the activation of PKA and AMPK in skeletal muscle were similar between chow and HFD rats. p38 MAPK phosphorylation was increased with fasting in chow-fed but not HFD rats. Our findings suggest that a blunted effect of fasting on the induction of PDK4, MCAD, and UCP3 in skeletal muscle from HFD rats is likely a result of already elevated levels of these enzymes, the induction of which is associated with increases in plasma fatty acid and PGC-1. On the other hand, a blunted induction of PRC and CPT-1 mRNA may be explained by decreases in p38 MAPK signaling.high-fat feeding; p38; AMPK; PGC-1; fatty acids; obesity; insulin resistance; fasting SKELETAL MUSCLE DISPLAYS A high degree of metabolic flexibility. Under conditions of reduced glucose availability, such as fasting, there is an upregulation of mRNA levels of enzymes involved in fatty acid oxidation (FAO) (31). For instance, fasting increases the mRNA expression of carnitine palmitoyl transfer 1 (CPT-1) (10, 34) and pyruvate dehydrogenase kinase 4 (PDK4) (10, 30, 34), which are involved in mediating the entrance of fatty acids into the mitochondria and inhibiting glucose oxidation, respectively. Similarly, fasting also upregulates the expression of uncoupling protein-3 (UCP3) (5, 27, 42) a protein hypothesized to act as a fatty acid exporter and which is involve...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.