The application of Bayesian networks for monitoring and
diagnosis of a multistage manufacturing process is described.
Bayesian network “part models” were designed to
represent individual parts in-process. These were combined to
form a “process model,” a Bayesian network model
of the entire manufacturing process. An efficient procedure
is designed for managing the “process network.”
Simulated data is used to test the validity of diagnosis made
from this method. In addition, a critical analysis of this
method is given, including computation speed concerns, accuracy
of results, and ease of implementation. Finally, a discussion
on future research in the area is given.
The design of even the simplest product requires thousands of decisions. Yet few of these decisions are supported with methods on paper or on computers. Is this because engineering design decisions do not need support or is it because techniques have yet to be developed that are usable on a wide basis? In considering this question a wide range of decision problem characteristics need to be addressed. In engineering design some decisions are made by individuals, others by teams -some are about the product and others about the processes that support the product -some are based on complete, consistent, quantitative data and others on sparse, conflicting, qualitative discussions. To address the reasons why so little support is used and the characteristics of potentially useful decision support tools, a taxonomy of decision characteristics is proposed. This taxonomy is used to classify current techniques and to define the requirements for an ideal engineering design decision support system.
Emerging infectious diseases are characterized by complex interactions among disease agents, vectors, wildlife, humans, and the environment. Since the appearance of West Nile virus (WNV) in New York City in 1999, it has infected over 8,000 people in the United States, resulting in several hundred deaths in 46 contiguous states. The virus is transmitted by mosquitoes and maintained in various bird reservoir hosts. Its unexpected introduction, high morbidity, and rapid spread have left public health agencies facing severe time constraints in a theory-poor environment, dependent largely on observational data collected by independent survey efforts and much uncertainty. Current knowledge may be expressed as a priori constraints on models learned from data. Accordingly, we applied a Bayesian probabilistic relational approach to generate spatially and temporally linked models from heterogeneous data sources. Using data collected from multiple independent sources in Maryland, we discovered the integrated context in which infected birds are plausible indicators for positive mosquito pools and human cases for 2001 and 2002.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.