T-type calcium channels are thought to transform neuronal output to a burst mode by generating low voltage-activated (LVA) calcium currents and rebound burst discharge. In this study we assess the expression pattern of the three different T-type channel isoforms (Cav3.1, Cav3.2, and Cav3.3) in cerebellar neurons and focus on their potential role in generating LVA spikes and rebound discharge in deep cerebellar nuclear (DCN) neurons. We detected expression of one or more Cav3 channel isoforms in a wide range of cerebellar neurons and selective expression of different isoforms in DCN cells. We further identify two classes of large-diameter DCN neurons that exhibit either a strong or weak capability for rebound discharge, despite the ability to generate LVA spikes when calcium currents are pharmacologically isolated. By correlating the Cav3 channel expression pattern with the electrophysiological profile of identified DCN cells, we show that Cav3.1 channels are expressed in isolation in DCN-burst cells, whereas Cav3.3 is expressed in DCN-weak burst cells. Cav3.1-expressing DCN cells correspond to excitatory or GABAergic neurons, whereas Cav3.3-expressing cells are non-GABAergic. The Cav3 class of LVA calcium channels is thus expressed in specific combinations in a wide range of cerebellar neurons but contributes to rebound burst discharge in only a select number of cell classes.Purkinje cells ͉ cerebellum ͉ rebound discharge
Cerebellar Purkinje cells integrate multimodal afferent inputs and, as the only projection neurones of the cerebellar cortex, are key to the coordination of a variety of motor-and learning-related behaviours. In the neonatal rat the cerebellum is undeveloped, but over the first few postnatal weeks both the structure of the cerebellum and cerebellar-dependent behaviours mature rapidly. Maturation of Purkinje cell physiology is expected to contribute significantly to the development of cerebellar output. However, the ontogeny of the electrophysiological properties of the Purkinje cell and its relationship to maturation of cell morphology is incompletely understood. To address this problem we performed a detailed in vitro electrophysiological analysis of the spontaneous and intracellularly evoked intrinsic properties of Purkinje cells obtained from postnatal rats (P0 to P90) using whole-cell patch clamp recordings. Cells were filled with neurobiotin to enable subsequent morphological comparisons. Three stages of physiological and structural development were identified. During the early postnatal period (P0 to ∼P9) Purkinje cells were characterized by an immature pattern of Na + -spike discharge, and possessed only short multipolar dendrites. This was followed by a period of rapid maturation (from ∼P12 to ∼P18), consisting of changes in Na + -spike discharge, emergence of repetitive bursts of Na + spikes terminated by Ca 2+ spikes (Ca 2+ -Na + bursts), generation of the trimodal pattern, and a significant expansion of the dendritic tree. During the final stage (> P18 to P90) there were minor refinements of cell output and a plateau in dendritic area. Our results reveal a rapid transition of the Purkinje cell from morphological and physiological immaturity to adult characteristics over a short developmental window, with a close correspondence between changes in cell output and dendritic growth. The development of Purkinje cell intrinsic electrophysiological properties further matches the time course of other measures of cerebellar structural and functional maturation.
Spike output in many neuronal cell types is affected by low-voltage-activated T-type calcium currents arising from the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 channel subtypes and their splice isoforms. The contributions of T-type current to cell output is often proposed to reflect a differential distribution of channels to somatic and dendritic compartments, but the subcellular distribution of the various rat T-type channel isoforms has not been fully determined. We used subtype-specific Ca(v)3 polyclonal antibodies to determine their distribution in key regions of adult Sprague-Dawley rat brain thought to exhibit T-type channel expression, and in particular, dendritic low-voltage-activated responses. We found a selective subcellular distribution of Ca(v)3 channel proteins in cell types of the neocortex and hippocampus, thalamus, and cerebellar input and output neurons. In general, the Ca(v)3.1 T-type channel immunolabel is prominent in the soma/proximal dendritic region and Ca(v)3.2 immunolabel in the soma and proximal-mid dendrites. Ca(v)3.3 channels are distinct in distributing to the soma and over extended lengths of the dendritic arbor of particular cell types. Ca(v)3 distribution overlaps with cell types previously established to exhibit rebound burst discharge as well as those not recognized for this activity. Additional immunolabel in the region of the nucleus in particular cell types was verified as corresponding to Ca(v)3 antigen through analysis of isolated protein fractions. These results provide evidence that different Ca(v)3 channel isoforms may contribute to low-voltage-activated calcium-dependent responses at the somatic and dendritic level, and the potential for T-type calcium channels to contribute to multiple aspects of neuronal activity.
Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and participate in a variety of physiological functions. Recent advances have revealed roles of nAChRs in the regulation of synaptic transmission and synaptic plasticity, particularly in the hippocampus and midbrain dopamine centers. In general, activation of nAChRs causes membrane depolarization and directly and indirectly increases the intracellular calcium concentration. Thus, when nAChRs are expressed on presynaptic membranes their activation generally increases the probability of neurotransmitter release. When expressed on postsynaptic membranes, nAChR-initiated calcium signals and depolarization activate intracellular signaling mechanisms and gene transcription. Together, the presynaptic and postsynaptic effects of nAChRs generate and facilitate the induction of long-term changes in synaptic transmission. The direction of hippocampal nAChR-mediated synaptic plasticity - either potentiation or depression - depends on the timing of nAChR activation relative to coincident presynaptic and postsynaptic electrical activity, and also depends on the location of cholinergic stimulation within the local network. Therapeutic activation of nAChRs may prove efficacious in the treatment of neuropathologies where synaptic transmission is compromised, as in Alzheimer's or Parkinson's disease.
Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca 2+ -activated K + channels are known to control spike frequency in central neurons, Ca 2+ -activated K + channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca 2+ channels at the nanodomain level to support a previously undescribed transient voltage-and Ca 2+ -dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca 2+ influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.C entral neurons receive an enormous number of spontaneously active synaptic inputs, but exhibit the capacity to differentiate features of sensory input from background noise. Cerebellar Purkinje cells are contacted by up to ∼150,000 parallel fibers from granule cells, of which only a subset will convey sensory information at any given time. The activation of a peripheral receptive field is transmitted to the cerebellar cortex by mossy fibers in the form of high-frequency spike bursts (1). The resulting temporal summation of excitatory postsynaptic potentials (EPSPs) generates a similar high-frequency burst in granule cells (2). Purkinje cells should then also possess the means to respond effectively to bursts of parallel fiber input that convey sensory information compared with background activity.Postsynaptic membrane excitability can be controlled by activation of K + channels. There are two established types of Ca 2+ -activated K + (KCa) channels in CNS neurons: small conductance (SK, KCa2.x) and big conductance (BK, KCa1.1) (3, 4). A third class of intermediate conductance (KCa3.1, SK4, IK1) KCa channel is thought to be expressed only in microglia and endothelial cells in the CNS (3, 5, 6). KCa3.1 channels are gated by calmodulin in a similar manner to KCa2.x channels but are insensitive to block by apamin and tetraethylammonium (TEA) (6-8). Instead, the KCa3.1 α-subunit, encoded by the gene KCNN4, has specific residues that bind charybdotoxin and 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) (5-7, 9, 10).In cerebellar Purkinje cells, KCa1.1 and KCa2.2 channels are activated during a spike by high voltage-activated (HVA) P-type Ca 2+ channels (11). In contrast, low voltage-activated (LVA) Cav3 (T-type) Ca 2+ channe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.