BackgroundThe inflammatory bowel diseases (IBD) Crohn's disease and ulcerative colitis result from alterations in intestinal microbes and the immune system. However, the precise dysfunctions of microbial metabolism in the gastrointestinal microbiome during IBD remain unclear. We analyzed the microbiota of intestinal biopsies and stool samples from 231 IBD and healthy subjects by 16S gene pyrosequencing and followed up a subset using shotgun metagenomics. Gene and pathway composition were assessed, based on 16S data from phylogenetically-related reference genomes, and associated using sparse multivariate linear modeling with medications, environmental factors, and IBD status.ResultsFirmicutes and Enterobacteriaceae abundances were associated with disease status as expected, but also with treatment and subject characteristics. Microbial function, though, was more consistently perturbed than composition, with 12% of analyzed pathways changed compared with 2% of genera. We identified major shifts in oxidative stress pathways, as well as decreased carbohydrate metabolism and amino acid biosynthesis in favor of nutrient transport and uptake. The microbiome of ileal Crohn's disease was notable for increases in virulence and secretion pathways.ConclusionsThis inferred functional metagenomic information provides the first insights into community-wide microbial processes and pathways that underpin IBD pathogenesis.
Vedolizumab was more effective than placebo as induction and maintenance therapy for ulcerative colitis. (Funded by Millennium Pharmaceuticals; GEMINI 1 ClinicalTrials.gov number, NCT00783718.).
Vedolizumab-treated patients with active Crohn's disease were more likely than patients receiving placebo to have a remission, but not a CDAI-100 response, at week 6; patients with a response to induction therapy who continued to receive vedolizumab (rather than switching to placebo) were more likely to be in remission at week 52. Adverse events were more common with vedolizumab. (Funded by Millennium Pharmaceuticals; GEMINI 2 ClinicalTrials.gov number, NCT00783692.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.