BackgroundClostridium difficile infection (CDI), a complication of antibiotic-induced injury to the gut microbiome, is a prevalent and dangerous cause of infectious diarrhea. Antimicrobial therapy for CDI is typically effective for acute symptoms, but up to one third of patients later experience recurrent CDI. Fecal-derived microbiota transplantation (FMT) can ameliorate the underlying dysbiosis and is highly effective for recurrent CDI. Traditional methods of FMT are limited by patient discomfort, risk and inefficient procedures. Many individuals with recurrent CDI have extensive comorbidities and advanced age. Widespread use of FMT requires strategies that are non-invasive, scalable and applicable across healthcare settings.MethodsA method to facilitate microbiota transfer was developed. Fecal samples were collected and screened for potential pathogens. Bacteria were purified, concentrated, cryopreserved and formulated into multi-layered capsules. Capsules were administered to patients with recurrent CDI, who were then monitored for 90 days.ResultsThirteen women and six men with recurrent CDI were provided with microbiota transfer with orally administered capsules. The procedure was well tolerated. Thirteen individuals responded to a single course. Four patients were cured after a second course. There were 2 failures. The cumulative clinical cure rate of 89% is similar to the rates achieved with reported fecal-derived transplantation procedures.ConclusionsRecurrent CDI represents a profound dysbiosis and a debilitating chronic disease. Stable cure can be achieved by restoring the gut microbiome with an effective, well-tolerated oral capsule treatment. This strategy of microbiota transfer can be widely applied and is particularly appropriate for frail patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-015-0930-z) contains supplementary material, which is available to authorized users.
This paper describes a methodology for the analysis of three-dimensional (3-D) kinematics of live joints of the foot based on tomographic image data acquired via magnetic resonance (MR) imaging. A mechanical jig facilitates acquisition of MR images corresponding to different positions of the joint in a pronation-supination motion. The surfaces of the individual tarsal bones are constructed by segmenting the MR images. A mathematical description of the motion of the individual bones and of their relative motion is derived by computing the rigid transformation required to match the centroids and the principal axes of the surfaces. The mathematically described motion is animated via surface renditions of the bones. The kinematics of the bones are analyzed based on features extracted from the motion description and on how they vary with motion. Based on 17 joints that have been imaged, which includes an abnormal joint and the same joint after surgical correction, we conclude that this methodology offers a practical tool for measuring internal 3-D kinematics of joints in vivo and for characterizing and quantifying with specificity normal kinematics and their pathological deviations. Some of the 3-D kinematic animations generated using the methods of this paper for normal joints can be seen at: http:(/)/www.mipg.upenn.edu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.